Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (12): 922-931    DOI: 10.11901/1005.3093.2024.170
  研究论文 本期目录 | 过刊浏览 |
预氧化处理温度对镍铝涂层耐腐蚀性能的影响
许世鹏1,2, 郑月红1, 占发琦1(), 喇培清1()
1 兰州理工大学 有色金属先进加工与再利用国家重点实验室 兰州 730050
2 酒泉职业技术学院 甘肃省太阳能发电系统重点实验室 酒泉 735000
Effect of Different Pre-oxidation Temperature on Corrosion Resistance of Ni-Al Coatings to High Temperature Chloride Molten Salt
XU Shipeng1,2, ZHENG Yuehong1, ZHAN Faqi1(), LA Peiqing1()
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Gansu Key Laboratory of Solar Power System Engineering, Jiuquan Vocational and Technical College, Jiuquan 735000, China
引用本文:

许世鹏, 郑月红, 占发琦, 喇培清. 预氧化处理温度对镍铝涂层耐腐蚀性能的影响[J]. 材料研究学报, 2024, 38(12): 922-931.
Shipeng XU, Yuehong ZHENG, Faqi ZHAN, Peiqing LA. Effect of Different Pre-oxidation Temperature on Corrosion Resistance of Ni-Al Coatings to High Temperature Chloride Molten Salt[J]. Chinese Journal of Materials Research, 2024, 38(12): 922-931.

全文: PDF(29402 KB)   HTML
摘要: 

将磁控溅射制备的镍铝涂层在不同温度预氧化成氧化膜,然后将其在氯化物混合熔盐中进行高温腐蚀,研究了这种氧化膜的微观结构和镍铝涂层耐高温氯化物熔盐腐蚀的性能。结果表明:将镍铝涂层在1000℃预氧化生成了连续致密的氧化膜;在800和900℃预氧化不能生成完整连续致密的氧化膜;而在1100℃预氧化虽然能生成氧化膜,但是基体元素向涂层扩散在表面生成铁的颗粒状物质,使其耐蚀性降低。镍铝涂层在1000℃预氧化生成的氧化膜在800℃的高温氯化物熔盐腐蚀100 h后没有显著的变化,表明其具有较高的耐高温腐蚀性。其原因是,生成的连续完整的α-Al2O3层保护了基底。高温腐蚀时扩散到涂层中的铬元素含量明显提高,表明高温腐蚀促进了基体中铬元素的扩散和析出。

关键词 金属材料耐蚀材料预氧化氯化物熔盐    
Abstract

The chloride-based molten salt is expected to be the next generation of heat storage medium for concentrated solar power technology. However, the chloride-based molten salts have severer corrosive effect to the relevant metallic structural parts at elevated temperatures. In this paper, Ni-Al coatings were prepared on Ni-based alloy IN 625 by magnetron sputtering technique. Then the coated alloys were pre-oxidized in air at different temperatures. Next, the corrosion behavior of the pre-oxidized coatings in the mixed chloride molten salts at 800oC was assessed via immersion test. Meanwhile, the formed oxide scales due to pre-oxidation treatment, and the variation of the pre-oxidized scales after immersion test were also characterized. The results show that a continuous and dense oxide scale can form when the pre-oxidation at 1000oC. When the pre-oxidation at 800 and 900oC, a complete and continuous dense oxide scale cannot form, and when the pre-oxidation at 1100oC, although an oxide scale will form, but a large number of nodular oxides generate on the top surface of the pre-formed oxide scale due to the rapid outwards diffusion of alloying elements from the substrate during pre-oxidation, which is not conducive to the corrosion resistance of the coating. After corrosion in molten chloride salts at 800oC for 100 h, the Ni-Al coated IN 625 alloy pre-oxidized at 1000oC presented only little mass change, indicating that the coating has good high-temperature corrosion resistance, this may mainly be due to the formation of a complete and continuous oxide scale of α-Al2O3, which plays role in anti-corrosion protection for the substrate. With the progress of high temperature corrosion, the Cr content in the coating increases obviously, indicating that high temperature promotes the outward diffusion of Cr atoms from the substrate.

Key wordsmetallic materials    corrosion resistant material    pre-oxidation    chloride melt
收稿日期: 2024-04-10     
ZTFLH:  O484  
基金资助:甘肃省自然科学基金(22JR5RF1078);酒泉市科技支撑计划(2023CA2067);甘肃省太阳能发电系统重点实验室开放课题(2024SPKL02)
通讯作者: 喇培清,研究员,pqla@lut.edu.cn,研究方向为金属间化合物、有色金属纳米材料制备、结构及其性能和应用等
占发琦,副研究员,zhanfaqi@lut.edu.cn,研究方向为金属碳化物的制备及其性能
Corresponding author: LA Peiqing, Tel: 13893166172, E-mail: pqla@lut.edu.cn;
ZHAN Faqi, Tel: 15209310025 E-mail: zhanfaqi@lut.edu.cn
作者简介: 许世鹏,1987年生,男,博士生
图1  镍铝涂层的表面形貌和元素分布
图2  在不同温度预氧化的镍铝涂层的GI-XRD图
图3  在不同温度预氧化的镍铝涂层的截面形貌和元素分布
图4  在不同温度预氧化的镍铝涂层的表面形貌和元素分布
No.ONiAlCrFe
1#41.212.124.65.916.2
2#49.410.939.30.40.0
表1  图4中标记点的能谱色散光谱分析
图5  在不同温度预氧化的镍铝涂层的表面形貌
图6  在不同温度预氧化的镍铝涂层表面元素含量的变化
图7  预氧化温度为1000℃的镍铝涂层的荧光Raman光谱
图8  在不同温度预氧化的镍铝涂层在800℃的NaCl/MgCl2/KCl (24.5∶55.0∶20.5,%) 混合熔盐中的热腐蚀动力学曲线
图9  在不同温度预氧化的镍铝涂层在800℃的NaCl/MgCl2/KCl (24.5∶55.0∶20.5,%) 混合熔盐中腐蚀100 h后GI-XRD谱
图10  在不同温度预氧化的镍铝涂层热腐蚀100 h后涂层截面的元素分布
图11  在不同温度预氧化的镍铝涂层热腐蚀100 h后表面的元素分布
图12  在不同温度预氧化的镍铝涂层热腐蚀100 h后涂层表面元素含量的变化图和在不同温度生成主要金属氧化物的吉布斯自由能
1 Liu M, Tay N H S, Bell S, et al. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies [J]. Renew. Sustain. Energ. Rev., 2016, 53: 1411
2 Hou S J, Zhu S L, Wang F H, et al. A magnetron sputtered microcrystalline beta-NiAl coating for SC superalloys. Part I. Characterization and comparison of isothermal oxidation behavior at 1100 degrees C with a NiCrAlY coating [J]. Appl. Surf. Sci., 2015, 324:1
3 Ding W J, Bauer T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants [J]. Engineering, 2021, 7(3): 334
4 Ding W J, Yang F, Alexander B, et al. Molten chloride salts for high-temperature thermal energy storage: Continuous electrolytic salt purification with two Mg-electrodes and alternating voltage for corrosion control [J]. Sol. Energ. Mat. Sol. C., 2021, 223:110979
5 Saha S, Ganguli A K. FeCoNi alloy as noble metal-free electrocatalyst for oxygen evolution reaction (OER) [J]. Chem. Select., 2017, 2: 1630
6 Gong M, Dai H. A mini review on NiFe-based materials as highly active oxygen evolution reaction electrocatalysts [J]. Nano Res., 2015, 8: 23
7 Yang Y F, Liu Z L, Ren P, et al. Hot corrosion behavior of Pt+Hf co-modified NiAl coating in the mixed salt of Na2SO4-NaCl at 900oC [J]. Corros. Sci., 2020, 167: 108527
8 Seyring M, Rettenmayr M. Impact of crystallography at Ni/NiAl interfaces on the nucleation of Ni3Al [J]. Acta Mater., 2021, 208: 116713
9 Liu H, Xu M M, Li S, et al. Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinum-modified aluminide coating [J]. J. Mater. Sci. Technol., 2020, 54: 132
doi: 10.1016/j.jmst.2020.05.007
10 Yang H Z, Li X Y, Zou Ji P, et al. Investigation on the microstructural evolution and oxidation resistance of Ru-doped NiAlHf coatings at 1200oC [J]. Surf. Coat. Technol., 2022, 441: 128578
11 Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58(2): 151
12 Liang C F, Liu W, Xia X B, et al. An Al2O3/Ni-Al tritium permeation barrier coating for the potential application in thorium-based molten salt reactor [J]. Vacuum, 2023, 213: 112110
13 Kitajima Y, Hayashi S, Nishimoto T, et al. Rapid formation of α-Al2O3 scale on an Fe-Al alloy by pure-metal coatings at 900oC [J]. Oxid. Met., 2010, 73: 375
14 Kitajima Y, Hayashi S, Nishimoto T, et al. Acceleration of metastable to alpha transformation of Al2O3 scale on Fe-Al alloy by pure-metal coatings at 900oC [J]. Oxid. Met., 2011, 75: 41
15 Shaaban A. Influence of NiAl2O4 spinel formation on the oxidation behavior of theNi50Al alloy at 1273K in air [J]. Surf. Coat. Technol., 2019, 379: 125023
16 Yang H Z, Zou J P, Shi Q, et al. Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation [J]. Corros. Sci., 2019, 115: 162
17 Liu Y D, Sun J, Pei Z L, et al. Oxidation and hot corrosion behavior of NiCrAlYSi+NiAl/cBN abrasive coating [J]. Corros. Sci., 2020, 167: 108486
18 Shuai J T, Zuo X, Wang Z Y, et al. Erosion behavior and failure mechanism of Ti/TiAlN multilayer coatings eroded by silica sand and glass beads [J]. J. Mater. Sci. Technol., 2021, 80: 179
doi: 10.1016/j.jmst.2021.01.001
19 Jiang C Y, Qian L Y, Feng M, et al. Benefts of Zr addition to oxidation resistance of a single-phase (Ni, Pt) Al coating at 1373K [J]. J. Mater. Sci. Technol., 2019, 35: 1334
20 He Y, Luo L L, Sushko M L, et al. Vacancy ordering during selective oxidation of β-NiAl [J]. Material, 2020, 12: 100783
21 Matsumoto M, Kato T, Hayakawa K, et al. The effect of pre-oxidation atmosphere on the durability of EB-PVD thermal barrier coatings with CoNiCrAlY bond coats [J]. Surf. Coat. Technol., 2008, 202: 2743
22 Alvarado J M, Morales-Estrella R, Boldrick M A, et al. Kinetic study of the competitive growth between θ-Al2O3 and α-Al2O3 during the early stages of oxidation of β-(Ni, Pt)Al bond coat systems: effects of low oxygen partial pressure and temperature [J]. Metall. Mater. Trans., 2014, 46(A): 726
23 Monceau D, Bouhanek K, Peraldi K, et al. Transition in high temperature oxidation kinetics of pd-modifed aluminide coatings: role of oxygen partial pressure, heating rate, and surface treatment [J]. J. Mater. Res., 2000, 15: 665
24 Nijdam T J, Sloof W G. Combined pre-annealing and pre-oxidation treatment for the processing of thermal barrier coatings on NiCoCrAlY bond coatings [J]. Surf. Coat. Technol., 2006, 201: 3900
25 Troncy R, Boccaccini L, Bonnet G, et al. Synthesis of self-healing NiAl-Al2O3 composite coatings by electrochemical way [J]. Surf. Coat. Technol., 2022, 441: 128579
26 Yu M, Sun Q S, Wang Q, et al. Effect of Pt-doping on the oxidation behaviors of the γ’-Ni3Al and β-NiAl phases in the NiSiAlY alloy [J]. Corros. Sci., 2022, 200: 110224
27 Li X Y, Zou J P, Shi Q, et al. Effect of Al2O3 scales from pre-oxidation on the microstructural evolution and phase transition of NiAlHf coatings at 1200oC [J]. Surf. Coat. Technol., 2022, 433: 128119
28 Li N, Naeem U H T, Che Y H, et al. Corrosion-resistant thermal spray coatings for low-alloy steel in contact with molten nitrate salts in solar power plants [J]. Sol. Energ. Mate. Sol. C., 2023, 259: 112432
29 Galetz M C, Oskay C, Madloch S. Microstructural degradation and interdiffusion behavior of NiAl and Ge-modified NiAl coatings deposited on Alloy 602 CA [J]. Surf. Coat. Technol., 2019, 364: 211
[1] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[5] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[8] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[14] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[15] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.