Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (6): 573-578    
  研究论文 本期目录 | 过刊浏览 |
采用BNi--7的Ti(C,N)基金属陶瓷与17--4PH沉淀硬化不锈钢的真空钎焊研究
王风振, 王全兆, 于宝海, 肖伯律,  马宗义
中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
Brazing of Ti(C,N) Cermet and 17–4PH Precipitation–hardened Stainless Steel by Nickel–based Filler Metal BNi–7
WANG Fengzhen, WANG Quanzhao, YU Baohai, XIAO Bolv, MA Zongyi
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

王风振 王全兆 于宝海 肖伯律 马宗义. 采用BNi--7的Ti(C,N)基金属陶瓷与17--4PH沉淀硬化不锈钢的真空钎焊研究[J]. 材料研究学报, 2011, 25(6): 573-578.
, , , , . Brazing of Ti(C,N) Cermet and 17–4PH Precipitation–hardened Stainless Steel by Nickel–based Filler Metal BNi–7[J]. Chin J Mater Res, 2011, 25(6): 573-578.

全文: PDF(967 KB)  
摘要: 采用镍基共晶钎料BNi--7对Ti(C,N)基金属陶瓷与17--4PH沉淀硬化不锈钢行了真空钎焊连接。研究了钎焊温度和焊缝厚度对焊接接头力学性能和微观结构的影响。
结果表明, BNi--7对金属陶瓷粘结相具有较强的溶解能力, 这是熔降元素(磷)能够在金属陶瓷侧大范围分布、钎焊接头获得良好界面结合的主要原因。随钎焊温度升高, 磷在金属陶瓷侧的分布区域逐渐扩大, 在1100℃保温60 min、焊缝厚度为50μm的工艺下获得了最高的接头抗剪强度454 MPa。
关键词 材料合成与加工工艺真空钎焊镍基钎料Ti(C,N)基金属陶瓷抗剪强度界面结构    
Abstract:The Ti(C,N) cermet and 17–4PH precipitation–hardened stainless steel were brazed in vacuum using nickel–based eutectic filler BNi–7. The effects of brazing temperature and brazing seam thickness on the microstructure and shear strength of the brazed joints were investigated. BNi–7 filler had a strong dissolution ability to the binder of the Ti(C,N) cermet. This is beneficial to the wide distribution of melting point depressant (phosphorous) in the Ti(C,N) cermet side and producing a good interfacial bonding. The distribution zone of phosphorous in the Ti(C,N) cermet side that is adjacent to the brazing seam increased as the brazing temperature rose. A maximum shear strength of 454 MPa was achieved at a brazing temperature of 1100 oC and a brazing time of 60 min with a brazing seam thickness of 50μm.
Key wordssynthesizing and processing technics    vacuum brazing    nickel base filler    Ti(C,N) cermet    shear strength, interface microstructure
收稿日期: 2011-04-11     
ZTFLH: 

TG425

 
1 S.Y.Zhang, Titanium carbonitride–based cermets: processing and properties, Mater. Sci. Eng., A163, 141(1993)

2 P.Ettmayer, W.Lengauer, The story of cermets, Powder. Metall. Int., 21, 37(1989)

3 G.S.Upadhyaya, Materials science of cemented carbides–an overview, Mater. Des., 22, 483(2001)

4 WANG Quanzhao, LIU Yue, ZHANG Yuzheng, GUAN Dehui, BI Jing, The vacuum brazing of TiC/NiCr cermet and 1Cr13 stainless steel, Transactions of the China Welding Institution, 27(8), 43(2006)

(王全兆, 刘  越, 张玉政, 关德慧, 毕 敬, TiC/NiCr金属陶瓷与1Cr13不锈钢的真空钎焊, 焊接学报,  27(8), 43(2006))

5 YE Dameng, XIONG Weihao, XU Hua’an, Current statues and development of welding technique of cermet/metal, Mater. Rev., 20(8), 72(2006) 

(叶大萌, 熊惟皓, 徐华安, 金属陶瓷与金属焊接技术的研究现状与展望, 材料导报, 20(8), 72(2006))

6 LIUNing, Ti(C,N)–based cermets, (Hefei, Hefei University of Technology Press, 2009) p.12

(刘  宁, Ti(C,N)基金属陶瓷材料  (合肥, 合肥工业大学出版社, 2009) p.12)

7 LI Xianfen, XU Daorong, LIU Ning, The flame brazing of Ti(C,N)–based cermet and 45 steel, Cemented Carbide, 20(2), 94(2003)

(李先芬, 徐道荣, 刘宁, Ti(C,N)基金属陶瓷与45号钢火焰钎焊试验研究, 硬质合金,  20(2), 94(2003))

8 L.X.Zhang, J.C.Feng, B.Y.Zhang, Ag–Cu–Ti alloy for brazing TiC cermet/steel, Mater. Lett., 59(1), 110(2005)

9 E.Lugscheider, H.S.Zhang, High Temperature Brazing, (Beijing, National Defense Industry Press, 1989) p.82

10 W.F.Gale, D.A.Butts, Transient liquid phase bonding, Sci. Technol. Weld. Joining, 9, 283(2004)

11 HU Hanqi, Theories of Metal Solidfication, (Beijing, China Machine Press, 2007) p.139

(胡汉起,  金属凝固原理,  (北京, 机械工业出版社, 2007) p.139)

12 E.Lugscheider, K.D.Partz, High temperature brazing of stainless steel with nickel base filler metal BNi–2, BNi–5 and BNi–7, Weld. Res. Suppl., 6, 160(1983)
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[11] 王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
[12] 刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
[13] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[14] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.
[15] 唐昭辉, 丁学勇, 董越, 刘程宏, 魏国. w(MgO)对高钛高炉渣黏流特性的影响*[J]. 材料研究学报, 2016, 30(6): 443-447.