Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (3): 321-326    
  研究论文 本期目录 | 过刊浏览 |
纳米LiFePO$_{4}$/C复合正极材料的溶剂热合成
田俐1,2,  黄可龙1
1.中南大学化学化工学院 长沙 410083
2.湖南科技大学材料科学与工程系 湘潭 411201
Solvothermal Synthesis of Nanometer LiFePO4/C Composite Cathode Materials
TIAN Li 1,2, HUANG Kelong1
1.School of Chemistry and Chemical Engineering, Central South University, Changsha 410083
2.Department of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201
引用本文:

田俐 黄可龙. 纳米LiFePO$_{4}$/C复合正极材料的溶剂热合成[J]. 材料研究学报, 2011, 25(3): 321-326.
, . Solvothermal Synthesis of Nanometer LiFePO4/C Composite Cathode Materials[J]. Chin J Mater Res, 2011, 25(3): 321-326.

全文: PDF(1061 KB)  
摘要: 采用乙二醇溶剂热法, 以蔗糖为碳源, 制备了橄榄石型纳米级LiFePO4/C复合正极材料, 对其物相、形貌、结构、成分和性能进行了表征。结果表明, 所制备的纳米LiFePO4/C的形貌为棒状, 直径约为100 nm, 结晶度高、分散性好。LiFePO4的粒径细化和掺碳有利于提高LiFePO4正极材料的电化学性能, 其首次充放电比容量(0.1 C)分别为166 mAh•g-1和164 mAh•g-1, 充放电电压平台分别为3.45 V和 3.40 V; 在5 C大倍率放电下, 经过20次循环, 其比容量保持率为95.4%。
关键词 材料合成与加工工艺溶剂热LiFePO4/C纳米材料电化学性能    
Abstract:Nanosized LiFePO4/C composite cathode materials have been synthesized via solvothermal method, using sucrose as carbon source and glycol as solvent. The phase, morphology, structure, composition and performance of LiFePO4/C powders were characterized. The results show that LiFePO4/C composite has uniform nanorod morphology with the diameter of about 100 nm, well-crystallinity and monodispersion. Galvanostatic charge-discharge tests showed that the size-reducation and carbon-coating of LiFePO4/C nanograins are in favor of optimizing the electrochemical performance of LiFePO4 positive materials. The first charge and discharge specific capacities of 166 mAh·g−1 and 164 mAh·g−1 were obtained at 0.1 C, while the voltage platforms were 3.45 V and 3.40 V, respectively. The nanosized LiFePO4/C composite cathode materials retained high stability after 20 cycles at 5 C, with the specific capacity retention up to 95.4%.
Key wordssynthesizing and processing technics    solvothermal synthesis    LiFePO4/C    nanomaterials    electrochemical properties
收稿日期: 2011-02-23     
ZTFLH: 

TB333

 
基金资助:

中国博士后科学基金20100480947面上项目, 中南大学博士后基金1332-74341015511, 湖南科技大学博士启动基金E51079和教育科学研究G30953资助项目。

1 YU Chuan, YANG Shaowu, MENG lina, Research progress on modification of lithium iron phosphate used as cathode for lithium ion batteries, New Chemical Materials, 37(5), 12(2009)

(于川, 杨绍武, 孟丽娜, 正极材料磷酸铁锂的改性研究进展, 化工新型材料, 37(5), 12(2009))

2 K.Saravanan, P.Balay, M.V.Reddy, B.V.R.Chowdari, J.J.Vittal, Morphology controlled synthesis of LiFePO4/C nanoplates for Li–ion batteries, Energy Environ. Sci., 3(4), 457(2010)

3 B.Ellis, W.H.Kan, W.R.M.Makahnouk, L.F.Nazar, Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4, J. Mater. Chem., 17(30), 3248(2007)

4 K.Saravanana, M.V.Reddyb, P.Balaya, H.Gongd, B.V.R.Chowdarib, J.J.Vittal, Storage performance of LiFePO4 nanoplates, J. Mater. Chem., 19(5), 605(2009)

5 J.Liu, J.W.Wang, X.D.Yan, X.F.Zhang, G.L.Yang, A.F.Jalbout, R.S.Wang, Long-term cyclability of LiFePO4/C composite cathode material for lithiumion battery applications, Electrochimica Acta, 54(24),5656(2009)

6 C.M.Julien, A.Mauger, A.Ait-Salah, M.Massot, F.Gendron, K.Zaghib, Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application, Ionics, 13(6), 395(2007)

7 G.X.Wang, H.Liu, J.Liu, S.Z.Qiao, G.Q.M.Lu, P.Munroe, H.Ahn, Mesoporous LiFePO4/C nano-composite cathode materials for high power lithium ion batteries with superior performance, Adv. Mater., 22(44), 4944(2010)

8 S.Lim, C.S.Yoon, J.Cho, Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries, Chem. Mater., 20(14), 4560(2008)

9 E.J.Hosono, Y.G.Wang, N.Kida, M.Enomoto, N.Kojima, M.Okubo, H.Matsuda, Y.Saito, T.Kudo, T.Honma, H.S.Zhou, Synthesis of triaxial LiFePO4 nanowire with a vgcf core column and a carbon shell through the electrospinning method, ACS Appl. Mater. & Interfaces, 2(1), 212(2010)

10 N.N.Sinha, C.Shivakumara, N.Munichandraiah, High rate capability of a dual–porosity LiFePO4/C composite, ACS Appl. Mater. & Interfaces, 2(7), 2031(2010)

11 M.H.Lee, J.Y.Kim, H.K.Song, A hollow sphere secondary structure of LiFePO4 nanoparticles, Chem. Commun., 46(36), 6795(2010)

12 S.W.Oh, S.T.Myung, S.M.Oh, K.H.Oh, K.Amine, B.Scrosati, Y.K.Sun, Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries, Adv. Mater., 22(43) , 4842(2010)

13 H.Liu, P.Zhang, G.C.Li, Q.Wu, Y.P.Wu, LiFePO4/C composites from carbothermal reduction method, J.Solid State Electroehem., 12(7-8), 1011(2008)

14 N.N.Sinha, N.Munichandraiah, Single-shot preparation of crystalline nanoplate LiFePO4 by a simple polyol route, J. Electrochem. Soc., 157(7), A824(2010)

15 C.Alvaro, C.Y.Manuel, M.Juli´an, S.P.Jes´us, R.C.Enrique, A new and fast synthesis of nanosized LiFePO4 electrode materials, Eur. J. Inorg. Chem., (9), 1758(2006)

16 Y.Q.Wang, J.L.Wang, J.Yang, Y.Nuli, High–rate LiFePO4 electrode material synthesized by a novel route from FePO4 ·4H2O, Adv. Funct. Mater., 16(16), 2135(2006)

17 D.Rangappa, K.J.Sone, T.Kudo, I.Honma, Directed growth of nanoarchitectured LiFePO4 electrode by solvothermal synthesis and their cathode properties, J. Power Sources, 195(18), 6167(2010)

18 F.Teng, S.Santhanagopalan, R.Lemmens, X.B.Geng, P.Patel, D.D.Meng, In situ growth of LiFePO4 nanorod arrays under hydrothermal condition, Solid State Sci., 12(5), 952(2010)

19 X.J.Huang, S.J.Yan, H.Y.Zhao, L.Zhang, R.Guo, C.K.Chang, X.Y.Kong, H.B.Han, Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process, Mater. Charact., 61(7), 720(2010)

20 G.Meligrana, C.Gerbaldi, A.Tuel, S.Bodoardo, N.Penazzi, Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li–ion cells, J. Power Sources, 160(1), 516(2006)

21 J.F.Ni, M.Morishit, Y.Kawabe, M.Watada, N.Takeichi, T.Sakai, Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid, J. Power Sources, 195(9), 2877(2010)

22 K.Kanamura, S.Koizumi, K.Dokko, Hydrothermal synthesis of LiFePO4 as a cathode material for lithium batteries, J. Mater. Sci., 43(7), 2138(2008)
[1] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[2] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[3] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[4] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 肖揽, 于文华, 黄昊, 吴爱民, 靳晓哲. 锂离子电池负极材料TiS3 纳米片的制备和性能[J]. 材料研究学报, 2022, 36(11): 821-828.
[7] 陈冠震, 陈平, 徐东卫, 闵卫星. 中空碳/Fe3O4磁性量子点复合材料的制备及其吸波性能[J]. 材料研究学报, 2022, 36(1): 29-39.
[8] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[9] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[10] 刘佳良, 陈平, 徐东卫, 于祺. 磁性多孔RGO@Ni复合材料的制备和吸波性能[J]. 材料研究学报, 2020, 34(9): 641-649.
[11] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[12] 左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
[13] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[14] 巩桂芬,李泽,王磊,崔巍巍. 静电纺TiO2改性联苯型聚酰亚胺锂离子电池隔膜[J]. 材料研究学报, 2020, 34(3): 169-175.
[15] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.