Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (5): 547-549    
  研究论文 本期目录 | 过刊浏览 |
用等离子体增强化学气相沉积制备微晶硅薄膜
程华,  张昕, 张广城, 刘汝宏
1.中国科学院金属研究所 沈阳 110016
2.中国人民解放军装甲兵技术学院 长春 130117
3.大连理工大学 大连 116024
The Preparation of Microcrystalline Si Films Deposited by ECR-PECVD Using SiH4+Ar
CHENG Hua, ZHANG Xin, ZHANG Guangcheng, LIU Ruhong, WU Aimin, SHI Nanlin
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2.Armor Technique Institute of PLA, Changchun 130117
3.Dalian University of Technology, Dalian 116024
引用本文:

程华 张昕 张广城 刘汝宏. 用等离子体增强化学气相沉积制备微晶硅薄膜[J]. 材料研究学报, 2010, 24(5): 547-549.
. The Preparation of Microcrystalline Si Films Deposited by ECR-PECVD Using SiH4+Ar[J]. Chin J Mater Res, 2010, 24(5): 547-549.

全文: PDF(617 KB)  
摘要: 以Ar+SiH4作为反应气体, 用电子回旋共振等离子体化学气相沉积(ECR--PECVD)方法制备微晶硅薄膜, 研究了微波功率对薄膜中H含量、薄膜的沉积速率、择优取向和结晶度的影响。结果表明, 在300℃制备低温微晶硅薄膜, 随着微波功率的增大, 薄膜的沉积速率先增大后减小, 微波功率为600 W时达到最大; 而结晶度和薄膜中的H含量则分别呈现单调增大和单调减少的趋势; 使用不同的微波功率, 薄膜的择优取向均为(111)方向。
关键词 材料合成与加工工艺  微晶硅薄膜 Ar稀释SiH4 ECR--PECVD 微波功率    
Abstract:Microcrystalline silicon films were prepared using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR--PECVD). The effects of the microwave power on deposition rate, crystallinity, grain size and the configuration of H existing in microcrystalline silicon films were investigated. The results show that the crystallinity increases and the concentration of hydrogen decreases monotonously with the increasing of the microwave power. But the deposition rate first increases monotonously, and then decreases. Optimized microwave power is 600 W for the highest deposition rate. <111> orientation is the only dominant crystal texture for films obtained with different power.
Key wordssynthesizing and processing technics    microcrystalline silicon film    Ar-dilution    ECR-PECVD    microwave power
收稿日期: 2010-06-07     
ZTFLH: 

O484

 
[1] A. Fontcuberta i Morral, J. Bertomeu, P. Roca i Cabarrocas, The role of hydrogen in the formation of microcrystalline silicon, Materials Science and Engineering B, 69–70, 559–563 (2000) [2] Michio Kondo, Makoto Fukawa, Lihui Guo, et al. High rate growth of microcrystalline silicon at low temperatures, Journal of Non-Crytalline Solids, 266-269, 84-89 (2000) [3] Rui Huang, Xuanying Lin, Wenyong Huang, et al. Effect of Hydrogen on the Low Temperature Growth of Polycrystalline Silicon Film Deposited by SiCl4/H2, Thin Solid Films, 513, 380-384 (2006) [4] N. H. Nickel, N. M. Johnson, J. Walker, Hydrogen induced generation of acceptorlike defects in polycrystalline silicon, Physical Review Letters, 75, 3720-3723 (1995) [5] G.Tureban, Y. Catherine, and B. Grolleau, Mass spectrometry of a silane glow discharge during plasma deposition of a-Si: H films, Thin Solid Films, 67, 309 (1980) [6] Liu Guohan, Ding Yi, He Deyan, et al. Investigation of deposition of hydrogenated amorphous silicon thin film with HW-MWECR-CVD system. Acta Energiae Solaris Sinica, 27, 986-989 (2006) [7] H. Cheng, A. M. Wu, N. L. Shi, L. S. Wen, Effect of Ar on polycrystalline Si films deposited by ECR-PECVD using SiH4. Journal of Material Science and Technology, 24, 690-692 (2008) [8] B. Strahma, A.A. Howling, L. Sansonnens, Microcrystalline silicon deposited at high rate on large areas from pure silane with efficient gas utilization, Solar Energy Materials & Solar Cells, 91, 495–502 (2007) [9] L Sansonnens, A A Howling, Ch Hollenstein, et al. The role of metastable atoms in argon-diluted silane radiofrequency plasmas, J. Phys. D: Appl. Phys., 27, 1406-1411 (1994) [10] W. J. Soppe, C. Devilee, M. Geusebroek, et al. The effect of argon dilution on deposition of microcrystalline silicon by microwave plasma enhanced chemical vapor deposition, Thin Solid Films, 515, 7490-7494 (2007) [11] E. Amanatides, S. Stamou, D. Mataras, Gas phase and surface kinetics in plasma enhanced chemical vapor deposition of microcrystalline silicon: The combined effect of rf power and hydrogen dilution, J. Appl. Phys., 90, 5786 (2001) [12] G. Cicalaa, P. Brunob, A. M. Losaccoc, PECVD of hydrogenated diamond-like carbon films from CH4–Ar mixtures: growth chemistry and material characteristics, Diamond and Related Materials, 13, 1361–1365 (2004) [13] Wen-Chu Hsiao, Chuan-Pu Liu, Ying-Lang Wang, Thermal prosperities of hydrogenated amorphous silicon prepared by high-density plasma chemical vapor depositon, Journal of Physics and Chemistry of Solids, 69, 648-652 (2008) [14] Debajyoti Das, Madhusudan Jana, A. K. Barua, Heterogeneity in microcrystalline-transition state: Origin of Si-nucleation and microcrystallization at higher rf power from Ar-diluted SiH4 plasma, Journal of Applied Physics, 89, 3041-3048 (2001) [15] G. Ambrosone, U. Coscia, S. Lettieri, Microcrystalline silicon thin films grown at high deposition rate by PECVD, Thin Solid Films, 511 – 512, 280 – 284 (2006)
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[11] 王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
[12] 刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
[13] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[14] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.
[15] 唐昭辉, 丁学勇, 董越, 刘程宏, 魏国. w(MgO)对高钛高炉渣黏流特性的影响*[J]. 材料研究学报, 2016, 30(6): 443-447.