材料研究学报, 2025, 39(6): 425-434 DOI: 10.11901/1005.3093.2024.242

研究论文

石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能

杨言言1, 刘堰1,2, 杨颂2, 汪紫彤1, 朱峰1, 余钟亮,1, 郝晓刚,2

1.上饶师范学院化学与环境科学学院 上饶 334001

2.太原理工大学化学与化工学院 太原 030024

Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates

YANG Yanyan1, LIU Yan1,2, YANG Song2, WANG Zitong1, ZHU Feng1, YU Zhongliang,1, HAO Xiaogang,2

1.School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China

2.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China

通讯作者: 余钟亮,教授,yzh2401@126.com,研究方向为非贵金属催化材料;郝晓刚,教授,xghao@tyut.edu.cn,研究方向为电驱动膜材料

责任编辑: 吴岩

收稿日期: 2024-05-29   修回日期: 2024-07-31  

基金资助: 国家自然科学基金区域创新发展联合基金(U21A2030)
国家自然科学基金(22169017)
江西省自然科学基金(20224BAB203026)
江西省教育厅项目(GJJ2201823)
江西省教育厅项目(GJJ2201824)

Corresponding authors: YU Zhongliang, Tel: 18734861008, E-mail:yzh2401@126.com;HAO Xiaogang, Tel: 13073535863, E-mail:xghao@tyut.edu.cn

Received: 2024-05-29   Revised: 2024-07-31  

Fund supported: National Natural Science Foundation Regional Innovation and Development Joint Fund(U21A2030)
National Natural Science Foundation of China(22169017)
Jiangxi Provincial Natural Science Foundation(20224BAB203026)
Science and Technology Research Project of Jiangxi Provincial Education Department(GJJ2201823)
Science and Technology Research Project of Jiangxi Provincial Education Department(GJJ2201824)

作者简介 About authors

杨言言,女,1983年生,博士,副教授

摘要

采用两步电沉积法制备一种花簇状石墨烯掺杂的聚吡咯/双金属氢氧化物(PPy-G/CoNi-LDH)杂化膜,使用XRD、SEM、XPS和TEM等手段表征其组成、结构和微观形貌。通过电控离子交换技术(Electrically switched ion exchange, ESIX) 将其用于对水中PO43-的吸附/脱附,采用电化学手段研究了磷酸盐浓度、吸附电位、酸碱性以及共存离子等因素对其吸附磷酸根离子性能的影响。结果表明,吸附电位和初始磷酸盐浓度的提高都使PPy-G/CoNi-LDH对PO43-的吸附量提高。在吸附电位为0.8 V条件下对10 mg·L-1溶液中PO43-的吸附量可达40.23 mg·g-1;在中性和微碱性条件下PPy-G/CoNi-LDH的吸附性能良好;在7次循环吸附/脱附过程中,PPy-G/CoNi-LDH的吸附稳定性较高。

关键词: 复合材料; 石墨烯掺杂的聚吡咯; 钴镍双金属氢氧化物; 电控离子交换; 磷酸根; 分离

Abstract

The recovery of phosphorus (P) resources from wastewater can alleviate the problem of eutrophication and shortage of phosphate resources. Herein, a flower-like hybrid film of Co-Ni layered double hydroxide grown on graphene doped polypyrrole (PPy-G/CoNi-LDH) with exclusive separation property for phosphate ions was successfully fabricated by using two-steps electrodeposition method, which may be applied for separation and recovery of low concentrated phosphate anions via electrically switched ion exchange (ESIX). The composition, morphology and structure of PPy-G/CoNi-LDH hybrid film were demonstrated by XRD, SEM, XPS, and TEM. The effect of various influencing factors, including phosphate concentrations, absorption potentials, acid-alkalinity, co-existing anions and their concentrations on the electrochemical adsorption performance of hybrid film was also investigated. The results indicate that the increase in absorption potentials and initial concentrations of wastwaters could enhance the adsorption capacity. The adsorption capacity of PPy-G/CoNi-LDH hybrid film for PO43- in 10 mg·L-1 PO43- solution was 40.23 mg·g-1 by an applied absorption potential of 0.8 V. In addition, in conditions of neutral and slightly alkaline solutions, PPy-G/CoNi-LDH hybrid film had good adsorption capacity, and it was minimally affected by coexisting ions and their concentrations. After 7 cycles of adsorption/desorption, the adsorption capacity PPy-G/CoNi-LDH hybrid film still maintained good stability.

Keywords: composite; graphene doped polypyrrole; CoNi-LDH; electrically switched ion exchange; phosphate anions; separation

PDF (10490KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434 DOI:10.11901/1005.3093.2024.242

YANG Yanyan, LIU Yan, YANG Song, WANG Zitong, ZHU Feng, YU Zhongliang, HAO Xiaogang. Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates[J]. Earth Science, 2025, 39(6): 425-434 DOI:10.11901/1005.3093.2024.242

磷广泛地应用在医药、精细化工、化工等领域,也是人类等有机生命体重要的营养元素[1,2]。人类为了获取更多的磷资源,打破了自然磷循环而开采越来越多的磷矿[3]。进入自然循环中磷的增多使水体富营养化,破坏了海洋、湖泊等的生态系统[4]。因此,降低磷矿消耗和防止水体富营养化受到了极大的关注。传统的除磷方法,有物理吸附法[5,6]、化学沉淀法[7]、生物除磷法[8]、膜分离法[9]等。这些方法可应用于分离高浓度的磷酸盐,但是易产生二次污染。因此,亟需开发分离低浓度磷酸盐且对环境友好的方法[10]

电控离子交换技术(ESIX)利用电活性离子交换材料传递电子和离子,施加不同的电位可调控对目标离子的吸附/脱附并能避免二次污染[11,12]。与其他共存阴离子相比,磷酸根离子的水合离子半径较小、带电荷数较多,极易与金属离子络合。层状双金属氢氧化物(Layered double hydroxides, LDHs)[13~16]是由两种及以上金属氢氧化物层及阴离子和水分子占据插层空间的二维层状水滑石材料,其层板金属离子更易结合离子半径小、带负电荷多的磷酸根阴离子形成配体化合物。但是,LDHs单独使用时导电性弱、不易成膜和极易团聚。石墨烯(Graphene, G)的导电性良好和机械稳定性较高[17],可为磷酸根离子提供结构稳定的传输通道。聚吡咯(Polypyrrole, PPy)是一种杂环共轭型导电高分子,对其施加不同电位时吡咯环氮原子上质子可在PPy和LDHs间来回迁移,能促进PO43与LDHs层板上羟基的配体交换[13~15]。因此,将选择性优异的LDHs与机械性能较高的石墨烯和高导电性的PPy相结合,有望高效分离回收废水中的低浓度磷酸盐。基于此,本文制备PPy-G/CoNi-LDH杂化膜,研究应用条件对其吸附磷酸盐性能的影响并分析其机理。

1 实验方法

1.1 实验用材料

硝酸钴(Co(NO3)2·6H2O);硝酸镍(Ni(NO3)2·6H2O);吡咯(纯度99%);石墨烯;N,N-二甲基甲酰胺(DMF)和磷酸三钠(Na3PO4·12 H2O ≥ 98%)。实验中所有水溶液均用去离子水(2~5 μS·cm-1)配制,所有化学试剂的纯度均为分析级。

1.2 膜电极材料石墨烯掺杂PPy膜和PPy-G/CoNi-LDH杂化膜的制备

导电基体的预处理:将面积为2.2 cm × 1.5 cm的碳布浸泡在1.0 mol/L H2SO4∶无水乙醇(体积比)为4∶1的混合溶液中2 h,以除去碳布表面的氧化物等杂质。将其取出后用去离子水冲洗干净,静置过夜后晾干备用。

所有电化学实验均使用三电极体系,对电极是1 cm2铂片电极,参比电极为Ag/AgCl。

制备石墨烯掺杂PPy膜(记为PPy-G):将0.1015 g的吡咯和1 mL DMF放入容量瓶中并加水定容到50 mL,将其倒入烧杯中并加入5 mg石墨烯,超声搅拌使石墨烯均匀分散在混合液中。将这种混合液用作电解液,工作电极是处理后的碳布,在0.8 V电位下进行恒电位电解反应600 s制备出石墨烯掺杂的PPy-G膜电极。用去离子水将PPy-G膜充分冲洗,晾干后备用。

制备PPy-G/CoNi-LDH杂化膜:将PPy-G膜用作工作电极,电解液是40 mL 0.1 mol/L Ni(NO3)2和20 mL 0.1 mol/L Co(NO3)2·6H2O混合溶液。采用恒电位电解法在-1.2 V的电位下反应600 s制备PPy-G/CoNi-LDH杂化膜电极,将其充分冲洗后晾干。

1.3 性能表征

使用辰华电化学工作站CHI760e测试PPy-G/CoNi-LDH杂化膜的离子交换性能;用离子色谱仪IC(CIC-D150)检测电解液中离子的浓度。所有实验均在常温(20~25 ℃)下进行。文中提到的电位,均相对于Ag/AgCl参比电极。

用X射线衍射仪(XRD,Rigaku MiniFlex600)测定杂化膜的XRD谱,以分析其晶格结构,测试条件为Cu ,扫描范围为5°~85°;用扫描电子显微镜(SEM, ZEISS Gemini 300)和透射电子显微镜(TEM, FEI TalosF20)观察杂化膜的表面微观形貌;用X射线光电子能谱仪(XPS, Thermo Scientific ESCALAB 250XI)测定杂化膜的XPS谱以分析其氧化前后的元素组成、含量以及价态。

选用100 mL Na3PO4溶液为模拟液,采用恒电位电解法测试PPy-G/CoNi-LDH的吸附性能。测试不同吸附电位和不同磷酸盐初始浓度条件下PPy-G/CoNi-LDH对磷酸根离子的吸附性能;在10 mg·L-1的PO43中分别加入5 、10 、20 mg·L-1的Cl-、NO3-、SO42-溶液,施加0.8 V吸附电位,测定复杂水环境中共存离子的浓度及类型对PPy-G/CoNi-LDH杂化膜吸附PO43性能的影响。在0.8 V下吸附、在-2.0 V下PPy-G/CoNi-LDH脱附7次的稳定性,杂化膜的吸附量(q)为

q=(ρ0-ρ)Vm

其中,ρ0ρ分别为初始和检测时间点PO43的质量浓度(mg·L-1),V为模拟溶液的体积(L),m为PPy-G/CoNi-LDH杂化膜的质量(g)。

2 结果和讨论

2.1 杂化膜的结构和组成

图1给出了PPy-G、CoNi-LDH和PPy-G/CoNi-LDH杂化膜的XRD谱。可以看出,在CoNi-LDH和PPy-G/CoNi-LDH谱中11.01°、23.06°、34.27°和60.54°处出现的尖峰,分别对应LDH典型的(003)、(006)、(012)和(110)晶面[18]。对比PPy-G和PPy-G/CoNi-LDH的谱可见,凡是PPy-G的特征峰也在杂化膜的相同位置出现,表明已经制备出PPy-G/CoNi-LDH杂化膜。

图1

图1   PPy-G、CoNi-LDH和PPy-G/CoNi-LDH杂化膜的XRD谱

Fig.1   XRD patterns of PPy-G, CoNi-LDH, and PPy-G/CoNi-LDH hybrid films


图2给出了PPy-G、CoNi-LDH、PPy-G/CoNi-LDH的SEM照片。从图2a可见,在第一步电沉积石墨烯掺杂的PPy-G后,出现了被薄膜包裹着的球状物和与其相连的片状薄膜,为沉积CoNi-LDH提供了位点。第二步电沉积后可观察到明显的花簇状双金属氢氧化物的结构,如图2cd所示。从图2c可见,杂化膜中LDH的层状花簇分布十分均匀,几乎没有团聚。但是,可见CoNi-LDH的团簇(图2b)。这表明,在PPy-G上沉积LDH使LDH团聚的程度降低而暴露出更多的活性位点,有利于离子和电子的传输,提高与磷酸根的相互作用和有利于杂化膜与磷酸根离子的表面络合[19]

图2

图2   PPy-G、CoNi-LDH、PPy-G/CoNi-LDH的SEM照片

Fig.2   SEM images of PPy-G (a), CoNi-LDH (b), and PPy-G/CoNi-LDH hybrid films (c, d)


图3给出了PPy-G/CoNi-LDH的透射电镜照片,用以进一步分析杂化膜的微观结构。从图3a可见在PPy-G上垂直生长的CoNi-LDH,较大的纳米片结构为石墨烯,较小的颗粒为聚吡咯。这些结构相互连接使杂化膜具有导电性,有利于磷酸根离子的吸附和脱附。从PPy-G/CoNi-LDH杂化膜的高分辨透射电镜照片(图3b)可观察到间距为0.25 nm的LDH(012)晶面的晶格条纹[20,21]

图3

图3   PPy-G/CoNi-LDH的TEM照片

Fig.3   TEM images of PPy-G/CoNi-LDH hybrid film at different magnifications (a) TEM, (b) HRTEM


图4给出了PPy-G/CoNi-LDH杂化膜吸附前后的XPS谱,用以分析其吸附磷酸盐离子前后的元素组成和含量,其中上方的曲线为氧化前状态。图4a给出了对PPy-G/CoNi-LDH杂化膜吸附前后全谱的分析,主要分析了C、N、P、O、Co和Ni元素。可以看出,在吸附后的谱中出现了明显的P元素峰。这表明,对杂化膜施加氧化电位后溶液中的磷酸根离子被吸附进膜内。从图4b可以看出,氧化后在结合能133.00 eV处出现P元素的峰,表明磷酸根离子被吸附入膜内[22]图4c给出了氧化前后Ni元素结合能的变化。862.79和881.32 eV处的峰为卫星峰,而在结合能855.80和873.81 eV处的峰为Ni2+的Ni 2p3/2和Ni 2p1/2的特征峰,结合能858.14 和877.71 eV处的峰是Ni3+的Ni 2p3/2和Ni 2p1/2的特征峰[23]图4d给出了氧化前后Co元素结合能的变化。在800.6和783.77 eV处的峰为卫星峰,在自旋轨道为780.55和796.97 eV处的峰是Co3+的Co 2p3/2和Co 2p1/2的特征峰,在自旋轨道781.84 和779.97 eV处的峰是Co2+的Co 2p3/2和Co 2p1/2的特征峰[24]。对比氧化前后Ni 2p和Co 2p的谱,可见吸附后Ni3+的含量比Ni2+的高,Co3+的含量比Co2+的高。这表明,在氧化过程中LDH层板带的正电荷增加,对杂化膜与PO43-之间的静电吸引有重要的影响[25, 26]

图4

图4   在10 mg·L-1 PO43-溶液中PPy-G/CoNi-LDH杂化膜在吸附前后的XPS谱

Fig.4   XPS spectrum of PPy-G/CoNi-LDH hybrid film in 10 mg·L-1 PO43- solution before and after oxidation: (a) survey spectrum, (b) P 2p, (c) Ni 2p and (d) Co 2p


2.2 杂化膜的电化学性能

石墨烯在吡咯单体溶液中的分散度以及LDH制备液中金属离子配比,对杂化膜的性能有极大的影响。实验考察了Ni:Co的摩尔比以及添加1 mL的DMF对杂化膜电化学活性的影响,以确定制备条件。第一步是制备石墨烯掺杂的PPy-G膜,第二步是电沉积制备不同Ni∶Co摩尔比的PPy-G/CoNi-LDH杂化膜。对一系列杂化膜进行电化学循环伏安(CV)测试,结果如图5a所示。Ni∶Co摩尔比为2∶1的杂化膜在磷酸盐溶液中的CV图积分面积和电流密度最大,即电化学活性最佳,交换磷酸根的性能最好。在PPy的制备过程中,有机溶剂DMF的添加提高了石墨烯的分散度,有利于其掺杂进入PPy膜中。图5b表明,添加DMF的杂化膜其CV图的电流密度明显比未添加DMF的高,其电化学活性更高。因此,Ni∶Co摩尔比为2∶1且添加DMF试剂是后续制备PPy-G/CoNi-LDH杂化膜的条件。

图5

图5   在-1.2 V电位下不同镍钴摩尔比及有无DMF添加条件下PPy-G/CoNi-LDH杂化膜的CV曲线

Fig.5   CV curves of PPy-G/CoNi-LDH hybrid film with different molar ratios of Ni∶Co (a) and with or without DMF (b) under -1.2 V potential


在PO43-初始浓度不同的条件下对PPy-G/CoNi-LDH杂化膜施加0.8 V吸附电位,考察其对PO43-的分离效果。图6给出了PO43-溶液的初始浓度分别为5、10、30和50 mg·L-1的杂化膜的吸附动力学曲线。可以看出,随着PO43-初始浓度的提高杂化膜的吸附量随之提高。在初始浓度为10 mg·L-1的电解液中,PPy-G/CoNi-LDH杂化膜对PO43-的吸附量可达40.23 mg·g-1

图6

图6   在不同初始PO43-浓度条件下PPy-G/CoNi-LDH杂化膜的吸附动力学曲线

Fig.6   Adsorption kinetic curves of PPy-G/CoNi-LDH hybrid film for phosphate anions with different initial concentrations under 0.8 V oxidation potential


使用准一级和准二级吸附动力学模型分析了杂化膜的性能。表1列出了初始浓度不同的杂化膜的吸附速率和理论吸附量,其中准一级和准二级的动力学模型方程式为

ln(qe-qt)=lnqt-k1t
tqt=tqe+1k2qe2

其中,qeqt 分别为反应6 h结束时和某一t时刻PPy-G/CoNi-LDH杂化膜对PO43-离子的吸附量(mg·g-1);t为吸附时间(min);k1k2为准一级反应速率常数(min-1)和准二级反应速率常数(g·mg-1·min-1)。从表1可见,准一级动力学线性相关系数均大于0.9,比准二级动力学的相关性更好。这表明,准一级吸附模型能更精切地描述PPy-G/CoNi-LDH杂化膜对以扩散为主的PO43-分离过程 [27]

表1   PPy-G/CoNi-LDH杂化膜在不同初始PO43-浓度条件下对PO43-的吸附动力学

Table 1  Kinetic adsorption parameters of PO43- on PPy-G/CoNi-LDH hybrid film with different concentrations under 0.8 V

ρ0 / mg·L-1qe(exp) / mg·g-1Pseudo-first-orderPseudo-second-order
k1 / min-1qe(cal) / mg·g-1R2k2 / g·mg-1·min-1qe(cal) / mg·g-1R2
5075.235.67 × 10-373.220.9975.1 × 10--5107.640.945
3062.505.80 × 10-359.810.9047.6 × 10-585.030.953
1040.235.07 × 10-341.110.9951.0 × 10-444.210.817
516.041.45 × 10-316.540.9473.5 × 10-485.320.386

新窗口打开| 下载CSV


图7a给出了在100 mL浓度为50 mg·L-1的PO43-离子溶液中,吸附电位分别为0.6、0.7、0.8、0.9、1.0 V时PPy-G/CoNi-LDH杂化膜对PO43-的吸附量。可以看出,随着吸附电位的提高杂化膜的吸附量随之提高。但是,对杂化膜施加电位为0.9 V时反应后电解液中出现白色浑浊物,可能是杂化膜的结构发生了变化。图7b给出了吸附电位为0.9 V吸附后杂化膜的SEM形貌。与图2d相比,在此条件下杂化膜的形貌发生了变化,部分LDHs结构已经被“摧毁”,掉落的LDHs可能堵塞了孔道,影响杂化膜与磷酸根之间的相互作用。图7c给出了吸附电位为1.0 V时杂化膜吸附PO43- 6 h后的SEM形貌。与图7b相比,其立体结构几乎倒塌,孔道被严重堵塞。因此,在后续实验中设置吸附电位为0.8 V。

图7

图7   在50 mg·L-1 PO43-溶液中PPy-G/CoNi-LDH杂化膜在不同吸附电位下对PO43-的吸附量和杂化膜在0.9和1.0 V吸附电位下吸附6 h的SEM照片

Fig.7   Adsorption capacity of PPy-G/CoNi-LDH hybrid film for PO43- under different adsorption potentials in 50 mg·L-1 PO43- solution (a), SEM images of PPy-G/CoNi-LDH hybrid film after adsorption under 0.9 V (b) and 1.0 V (c) adsorption potential


图8给出了浓度为10 mg·L-1的PO43-溶液中,溶液的pH值对PPy-G/CoNi-LDH杂化膜对PO43-吸附量的影响。用0.1 mol/L的HCl和NaOH溶液调控PO43-溶液的pH值。可以看出,在3.0~9.0区间内随着pH值的增大吸附量随之提高;在9.0~11.0范围内吸附量呈现下降趋势,尤其是在pH值为10.0~11.0区间内吸附量急剧下降(从32.45 mg·g-1下降到6.20 mg·g-1)。其原因可能是:(1) pH值过高时LDH金属氢氧化物层的去质子化效应加剧,引起PO43-与LDH去质子化表面的OH基团的静电排斥;(2) 在杂化膜吸附PO43-过程中存在PO43-与层板金属络合的配体交换并产生OH-,过高的pH值会抑制这个过程[25]。但是,在中性偏碱性的条件下PPy-G/CoNi-LDH杂化膜对PO43-的吸附量更高。其原因可能是,在PPy-G/CoNi-LDH杂化膜的氧化过程中PPy吡咯环上N-H键上的氢质子迁移到LDH上[17],从而缓解了pH值增大对配体交换的抑制。

图8

图8   在10 mg·L-1 PO43-溶液中,PPy-G/CoNi-LDH杂化膜对不同pH值的PO43-的吸附量

Fig.8   Effects of pH value on PO43- adsorption on PPy-G/CoNi-LDH hybrid film in 10 mg·L-1 PO43- solution under 0.8 V potential


图9给出了不同类型的阴离子对PPy-G/CoNi-LDH杂化膜吸附PO43-的影响。竞争离子的浓度为10 mg·L-1,其影响程度高低的排序为SO42- > NO3- > Cl-,表明所带电荷数和离子半径影响LDHs对阴离子的吸附。LDHs层板上的金属阳离子更易于与带电荷数多的阴离子相结合[28],而磷酸根阴离子是-3价,比其他类型阴离子的价态更高,更易与金属离子静电吸引。因此,共存离子的影响使LDHs优先与PO43-结合。同一离子的浓度越高,对PPy-G/CoNi-LDH杂化膜吸附性能的影响越大。在总体上,即使在共存离子浓度更高的条件下,PPy-G/CoNi-LDH杂化膜对PO43-的吸附也优于其他几种阴离子。

图9

图9   在10 mg·L-1 PO43-中,不同浓度Cl-、NO3-和SO42-共存对PPy-G/CoNi-LDH杂化膜吸附PO43-的影响

Fig.9   Effect of competing anions with different concentrations on PO43- adsorption onto PPy-G/CoNi-LDH hybrid film in 10 mg·L-1 PO43- solution


2.3 PPy-G/CoNi-LDH杂化膜的稳定性

在10 mg·L-1的PO43-溶液中,对杂化膜施加0.8 V的氧化吸附电位,还原电位为-2.0 V,用电化学吸附-脱附方法将杂化膜内的PO43-脱附,进行7次循环。图10给出了以第一循环的吸附量为基准的归一化吸附量。可以看出,随着吸附-脱附次数的增加,除第一循环外,随后6个循环的归一化吸附量趋于稳定。第二次循环的吸附量仅为第一循环的64%。其原因是:(1)杂化膜吸附磷酸根时,与LDHs原插层阴离子(NO3-)发生离子交换的PO43-在脱附过程不能脱除;(2) PO43-与LDHs层板上金属离子的络合作用较强,以至部分PO43-难以脱附[22]

图10

图10   PPy-G/CoNi-LDH杂化膜在10 mg·L-1 PO43-溶液中的循环稳定性

Fig.10   The normalized adsorption capacity of PPy-G/CoNi-LDH hybrid film for phosphate ions in 10 mg·L-1 PO43- solutions


2.4 PPy-G/CoNi-LDH杂化膜的吸附机理

为了揭示PPy-G/CoNi-LDH杂化膜对磷酸根的吸附机理,进行了空白对照实验。第一组,是PPy-G和CoNi-LDH对浓度为10 mg·L-1的PO43-溶液在0.8 V吸附电位下的吸附。对图11a的分析结果表明,PPy-G的吸附量为2.74 mg·g-1,CoNi-LDH的吸附量为25.31 mg·g-1,二者之和小于PPy-G/CoNi-LDH杂化膜的吸附量。这表明,在杂化膜对磷酸根的吸附过程中二者之间可能存在协同作用;第二组,是在离子交换情况下考察杂化膜对磷酸根的吸附性能。此时对杂化膜不施加吸附电位,对吸附的唯一推动力是浓度差。图11b给出了PPy-G/CoNi-LDH杂化膜对浓度为10 mg·L-1的PO43-溶液的吸附结果。可以看出,在离子交换(IX)下吸附量为19.0 mg·g-1,为ESIX的47.22%。这表明,在ESIX过程中有离子交换吸附和其它吸附。

图11

图11   PPy-GO、CoNi-LDH及PPy-G/CoNi-LDH杂化膜对PO43-的吸附量、PPy-G/CoNi-LDH以不同方式对PO43-的吸附量以及O 1s和N 1s氧化前后的XPS谱

Fig.11   Adsorption capacity of PPy-GO, CoNi-LDH and PPy-G/CoNi-LDH hybrid film (a), and PPy-G/CoNi-LDH hybrid film under different methods for phosphate ions (b) in 10 mg·L-1 PO43- solutions; O 1s (c) and N 1s(d) spectra of PPy-G/CoNi-LDH hybrid film before and after oxidation


为了证实还有其它吸附,结合O 1s和N 1s的XPS数据进行进一步分析。图11c给出了对杂化膜氧化前后O 1s的XPS谱(上方为氧化前,下方为氧化后),其中531.06、531.97和532.80 eV处的峰分别对应M-O、O-H基团和H-O-H。与始态相比,吸附后的O 1s谱中M-O的含量提高,而O-H基团的含量降低。其原因是,在杂化膜氧化过程中LDHs层板与金属离子相连的O-H基团被PO43-取代而形成PO43-与金属离子的络合[28,29]图11d给出了N元素结合能的变化情况。可以看出,N 1s在401.25、400.2和399.36 eV处的3个高斯峰分别对应=N-、-N-H-和-NH+基团[30,31]。在氧化过程中质子可能从PPy转移到CoNi-LDH,促进了LDH表面OH-与PO43-离子之间的交换和间接影响层板金属与PO43-离子之间的络合作用[20]。结合图4cd可见,无论是Ni3+还是Co3+氧化前后其相对含量均有所提高和阳离子所带正电荷增多,都有利于金属离子与PO43-之间的静电吸引。

综上所述,PPy-G/CoNi-LDH杂化膜对磷酸根的吸附,其主要吸附机理有:(1)金属阳离子与磷酸根阴离子间的静电吸引;(2)磷酸根离子与层板间硝酸根离子间的离子交换;(3) LDH层板金属离子与磷酸根离子的络合反应;(4) PPy-G与CoNi-LDH之间的协同效应。

3 结论

(1) 先在碳布基体上制备石墨烯掺杂的PPy-G膜,然后将CoNi-LDH沉积于其上可制备PPy-G/CoNi-LDH杂化膜。Ni∶Co摩尔比为2∶1且添加DMF的杂化膜,其活性最佳。

(2) 随着PO43-浓度的提高PPy-G/CoNi-LDH对PO43-的吸附量随之提高;几种类型共存离子的影响大小的排序为:SO42- > NO3- > Cl-。PPy-G/CoNi-LDH经历7个循环吸附后,其稳定性仍然良好。

(3) 这种材料的吸附机理为:PO43-与LDHs层间阴离子的离子交换、金属离子与PO43-之间络合的配体交换,以及PPy-O与LDH之间的协同作用和吡咯环N-H键上的氢质子在PPy链与CoNi-LDH之间的往复迁移效应。

参考文献

Jupp A R, Beijer S, Narain G C, et al.

Phosphorus recovery and recycling-closing the loop

[J]. Chem. Soc. Rev., 2021, 50(1): 87

[本文引用: 1]

Daneshgar S, Callegari A, Capodaglio A G, et al.

The potential phosphorus crisis: resource conservation and possible escape technologies: a review

[J]. Resources, 2018, 7(2): 37

[本文引用: 1]

Withers P J A, Elser J J, Hilton J, et al.

Greening the global phosphorus cycle: How green chemistry can help achieve planetary P sustainability

[J]. Green Chem., 2015, 17(4): 2087

[本文引用: 1]

Wang M, Hu C, Barnes B B, et al.

The great Atlantic Sargassum belt

[J]. Science, 2019, 365(6448): 83

DOI      [本文引用: 1]

Pelagic Sargassum is abundant in the Sargasso Sea, but a recurrent great Atlantic Sargassum belt (GASB) has been observed in satellite imagery since 2011, often extending from West Africa to the Gulf of Mexico. In June 2018, the 8850-kilometer GASB contained > 20 million metric tons of Sargassum biomass. The spatial distribution of the GASB is mostly driven by ocean circulation. The bloom of 2011 might be a result of Amazon River discharge in previous years, but recent increases and interannual variability after 2011 appear to be driven by upwelling off West Africa during boreal winter and by Amazon River discharge during spring and summer, indicating a possible regime shift and raising the possibility that recurrent blooms in the tropical Atlantic and Caribbean Sea may become the new norm.

Srinivasan R, Sorial G A.

Treatment of perchlorate in drinking water: A critical review

[J]. Sep. Purif. Technol., 2009, 69(1): 7

[本文引用: 1]

Ghorbani M, Seyedin O, Aghamohammadhassan M.

Adsorptive removal of lead (II) Ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review

[J]. J. Environ. Manage., 2020, 254: 109814

[本文引用: 1]

Chen F, Zeng S, Ma J, et al.

Treatment of chlorpyrifos manufacturing wastewater by peroxide promoted-catalytic wet air oxidation, struvite precipitation, and biological aerated biofilter

[J]. Environ. Sci. Pollut. R, 2019, 26(26): 26721

DOI      [本文引用: 1]

Chlorpyrifos manufacturing wastewater (CMW) is characterized by complex composition, high chemical oxygen demand (COD) concentration, and toxicity. An integrated process comprising of peroxide (H2O2) promoted-catalytic wet air oxidation (PP-CWAO), struvite precipitation, and biological aerated filters (BAF) was constructed to treat CMW at a starting COD of 34000-35000 mg/L, total phosphorus (TP) of 5550-5620 mg/L, and total organophosphorus (TOP) of 4700-4840 mg/L. Firstly, PP-CWAO was used to decompose high concentrations of organic components and convert concentrated and recalcitrant TOP to inorganic phosphate. Copper citrate and ferrous citrate were used as the catalysts of PP-CWAO. Under the optimized conditions, 100% TOP was converted to inorganic phosphate with 95.6% COD removal. Then, the PP-CWAO effluent was subjected to struvite precipitation process for recovering phosphorus. At a molar ratio of Mg2+:NH4+:PO43- = 1.1:1.0:1.0, phosphate removal and recovery reached 97.2%. The effluent of struvite precipitation was further treated by the BAF system. Total removals of 99.0%, 95.2%, 97.3%, 100%, and 98.3% were obtained for COD, total suspended solids, TP, TOP, and chroma, respectively. This hybrid process has proved to be an efficient approach for organophosphate pesticide wastewater treatment and phosphorus reclamation.

Tian Q, Liu Q M, Li F, et al.

Regulation of salt tolerance in bacteria and its application in hypersaline BNR process

[J]. Chem. Ind. Eng. Prog., 2025, 44: 465

DOI      [本文引用: 1]

The biological nutrients removal (BNR) process is inevitably affected by salinity changes. Understanding how bacteria adapt to high-salinity environments and regulating the operation mode of the system are crucial essential to maintain the stability of the system economically and efficiently. This study summarizes current research findings, demonstrating that salt-tolerant microorganisms are capable of quickly exchanging water, small molecules of amino acids, glycerol, polysaccharides and inorganic substances such as potassium and sodium ions with the environment to coordinate osmotic pressure with the change of environmental salinity. Extremophilic bacteria have developed unique cellular structures that take advantage of various types of energy sources, including light, electricity, and electron donors with lower chemical potentials than fatty acids, to achieve the energy-enriched-biopolymers accumulation (e.g. polysaccharides, polyphosphates, polyhydroxyalkanoates and polysulfides). Employing alternating anaerobic/anoxic/aerobic biofilm processes, along with cyclic accumulation and uptake of various energetic substances, introducing saline-adapted biomass, and feeding the reactor with seawater to acclimate biofilm communities, can enhance the efficiency of simultaneous nitrification and denitrification (phosphorus removal) in hypersaline environments. Finally, the study points out that how to configure a reasonable process with good stability, and to enhance microorganisms salt tolerance by appropriate external energy amendments are of urgent importance in the future research as well as in the BNR engineering practices.

田 晴, 刘青盟, 李 方 .

细菌的耐盐调控及其在高盐BNR工艺中的应用

[J]. 化工进展, 2025, 44: 465

[本文引用: 1]

Li X, Shen S T, Xu Y Y, et al.

Application of membrane separation processes in phosphorus recovery: A review

[J]. Sci Total Environ, 2021, 767: 144346

[本文引用: 1]

Kumar P S, Korving L, Keesman K J, et al.

Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics

[J]. Chem. Eng. J., 2019, 358: 160

[本文引用: 1]

Du X, Hao X, Wang Z, et al.

Electroactive ion exchange materials: current status in synthesis, applications and future prospects

[J]. J. Mater. Chem. A, 2016, 4(17): 6236

[本文引用: 1]

Gao F F, Du X, Hao X G, et al.

A potential-controlled ion pump based on a three-dimensional PPy@GO membrane for separating dilute lead ions from wastewater

[J]. Electrochim. Acta, 2017, 236: 434

[本文引用: 1]

Hong S P, Yoon H, Lee J, et al.

Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization

[J]. J. Colloid Interface Sci., 2020, 564: 1

[本文引用: 2]

Liu G G, Wang G R, Jin Z L.

Graphdiyne-modified NiV-layered double hydroxide nanostructures for supercapacitor applications

[J]. ACS Appl. Nano Mater., 2023, 6(23): 21803

Gu Y, Yang Z, Zhou J, et al.

Graphene/LDHs hybrid composites synthesis and application in environmental protection

[J]. Sep. Purif. Technol., 2024, 328: 125042

[本文引用: 1]

Ma X Q, Zhou J L, Lu N, et al.

Preparation and delaminating of glycine-Mg3Al LDHs and its intercalation compounding with montmorillonite

[J]. Chin. J. Mater. Res., 2014, 28(2): 100

[本文引用: 1]

马小茜, 周景龙, 卢 楠 .

甘氨酸-Mg3Al水滑石的制备、剥离以及与蒙脱土的插层组装

[J]. 材料研究学报, 2014, 28(2): 100

DOI      [本文引用: 1]

用共沉淀法制备甘氨酸(简称Gly)插层Mg<sub>3</sub>Al水滑石(简称Gly-Mg<sub>3</sub>Al LDHs), 利用甘氨酸等电点的性质实现了Mg<sub>3</sub>Al水滑石在pH=3~4水溶液中的剥离, 并将剥离出的LDHs纳米片层与蒙脱土进行插层组装, 制备出Mg<sub>3</sub>Al水滑石/蒙脱土层状复合材料。用X射线粉末衍射、红外光谱、N<sub>2</sub>吸附-脱附以及电泳仪等手段对样品进行了表征。结果表明, 制备出的Gly- Mg<sub>3</sub>Al LDHs结构规整, 晶相单一, 甘氨酸以42&#x000b0;的倾角排列于水滑石层间。在n<sub>Gly</sub>&#x02236;n<sub>NO3</sub><sup>-</sup>=1&#x02236;2的条件下制备的Gly-Mg<sub>3</sub>Al LDHs剥离效果最好, 剥离后形成的无机聚合粒子的zeta电位介于35 mV~ 40 mV之间, 剥离液可以稳定存在72 h。所得层状复合材料的层间距为1.44nm, 此值为单元LDHs片层与单元蒙脱土片层的厚度之和, 证明LDHs纳米片层与蒙脱土进行了有序交叉叠层。

Wang J, Gao F, Du X, et al.

A high-performance electroactive PPy/rGO/NiCo-LDH hybrid film for removal of dilute dodecyl sulfonate ions

[J]. Electrochim. Acta, 2020, 331: 135288

[本文引用: 2]

Zhao W H, Liu T T, Wu N D, et al.

Bimetallic electron-induced phase transformation of CoNi LDH-GO for high oxygen evolution and supercapacitor performance

[J]. Sci. China Mater., 2023, 66(2): 577

[本文引用: 1]

Tan S R, Yao Z, Liu Z C, et al.

Fabrication and supercapacitor performance of metal organic framework Zn-BTC/rGO nanocomposites with different morphologies

[J]. Chin. J. Mater. Res., 2024, 38 (8): 576

[本文引用: 1]

谭上荣, 姚 焯, 刘泽辰 .

金属有机骨架Zn-BTC/rGO复合材料的制备和性能

[J]. 材料研究学报, 2024, 38 (8): 576

DOI      [本文引用: 1]

用超声震荡法合成不同形貌的石墨烯负载Zn-BTC金属有机骨架材料,并将其用做电极组装超级电容器。用TG曲线、SEM观察、XRD谱、Brunauer-Emmett-Teller模型和Raman谱等手段表征材料的结构、形貌和电化学性能,使用电化学工作站和三电极体系测试了超级电容样品的电化学性能。结果表明,合成的一维棒状Zn-BTC均匀锚定在褶皱的石墨烯纳米片层上,其比电容为182.4 C·g<sup>-1</sup> (1 A·g<sup>-1</sup>),优于石墨烯负载的二维片状Zn-BTC (139.3 C·g<sup>-1</sup>)、石墨烯(97.9 C·g<sup>-1</sup>)和一维棒状Zn-BTC (62.8 C·g<sup>-1</sup>)。使用石墨烯负载的一维棒状Zn-BTC组装的对称超级电容器,在电流密度为1 A·g<sup>-1</sup>、比容量为57.7 F·g<sup>-1</sup>、功率密度为1390 W·kg<sup>-1</sup>条件下的最大能量密度为1.99 Wh·kg<sup>-1</sup>,经过2000次充放电循环后其比容量保持率为90.3%。

Zhu Y, An S, Sun X, et al.

Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance

[J]. Chem. Eng. J., 2020, 383: 123206

[本文引用: 2]

Liang H, Lin J, Jia H, et al.

Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors

[J]. J. Mater. Chem. A, 2018, 6(31): 15040

[本文引用: 1]

Ma P, Zhu J, Du X, et al.

Specific separation and recovery of phosphate anions by a novel NiFe-LDH/rGO hybrid film based on electroactivity-variable valence

[J]. J. Colloid Interface Sci., 2022, 626: 47

[本文引用: 2]

Liang H, Lin J, Jia H, et al.

Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor

[J]. J. Power Sources, 2018, 378: 248

[本文引用: 1]

Wang X L, Zhang D, Shi X M, et al.

Preparation by Co metal-organic framework template and capacitive properties of NiCo-layered double hydroxide/nickel foam composites

[J]. Chin. J. Inorg. Chem., 2023, 39(4): 607

[本文引用: 1]

王晓亮, 张 多, 石雪梅 .

Co金属有机骨架模板制备NiCo水滑石/泡沫镍复合材料及电容性能

[J]. 无机化学学报, 2023, 39(4): 607

[本文引用: 1]

Youmbi B S, Pelisson C H, Denicourt-Nowicki A, et al.

Impact of the charge transfer process on the Fe2+/Fe3+ distribution at Fe3O4 magnetic surface induced by deposited Pd clusters

[J]. Surf. Sci., 2021, 712: 121879

[本文引用: 2]

Yang Y Y, Li Y G, Zhu X W, et al.

Potential induced reversible removal/recovery of phosphate anions with high selectivity using an electroactive NiCo-layered double oxide film

[J]. J. Inorg. Mater., 2021, 36(3): 292

DOI      [本文引用: 1]

Phosphorus is an essential nutrient for organisms growth and a major cause of eutrophication in water bodies. Thus, it is crucial for both of the removal and recovery of phosphate from wastewater. In this work, the NiCo-layered double oxide (NiCo-LDO) was successfully fabricated on carbon cloth conductive substrate via the in-situ calcination of the NiCo-layered double hydroxide (NiCo-LDH) and served as the electrochemically switched ion exchange (ESIX) film electrode for the removal and recovery of PO4 3-. The performance of NiCo-LDO for PO4 3- removal by ESIX and ion exchange (IX) was compared, while the selectivity and stability of NiCo-LDO for PO4 3- removal were also investigated. The results revealed that, in (10.00±0.05) mg/L PO4 3- solution, the ion exchange quantity of the NiCo-LDO for PO4 3- removal by ESIX process was about twice over that by IX. Moreover, compared with Cl -, NO3 -, SO4 2- and I -, the NiCo-LDO exhibited much higher selectivity towards PO4 3-. In addition, the ion exchange quantity still retained 92% of its initial value after 5 uptake and release cycles. Coupled with XPS analysis, it was found that ESIX process of NiCo-LDO film electrode for PO4 3- removal and recovery mainly consisted of 3 steps, which were an irreversible “memory effect” structure recovery process, the redox reaction of metal ion in lamellar and the ligand exchange between PO4 3- and O-H groups.

杨言言, 李永国, 祝小雯 .

电活性镍钴双金属氧化物高选择性去除/回收水中磷酸盐离子

[J]. 无机材料学报, 2021, 36(3): 292

DOI      [本文引用: 1]

磷是植物体生长的重要营养素, 也是引发水体富营养化的重要因素, 因此废水中磷酸盐的去除与回收均至关重要。本研究采用单极脉冲电沉积法在炭布上制备镍钴双氢氧化物, 并于管式炉中原位焙烧制得镍钴双金属氧化物(NiCo-Layered Double Oxide, NiCo-LDO), 将其用于电控离子交换(Electrochemically Switched Ion Exchange, ESIX)过程实现PO<sub>4</sub> <sup>3-</sup>的去除与回收。实验对比了ESIX与离子交换(Ion Exchange, IX)过程中NiCo-LDO对PO<sub>4</sub> <sup>3-</sup>的去除性能, 并考察了其选择性及循环稳定性。结果表明, 在(10.00±0.05) mg/L的PO<sub>4</sub> <sup>3-</sup>溶液中, ESIX过程中膜对PO<sub>4</sub> <sup>3-</sup>的离子交换量约为IX的2倍; NiCo-LDO对PO<sub>4</sub> <sup>3-</sup>具有高选择性, 且经过5次循环后, 离子交换量仍可达到初始值的92%以上; 结合XPS分析, 发现NiCo-LDO对PO<sub>4</sub> <sup>3-</sup>的ESIX过程包括一个不可逆的“记忆效应”结构恢复过程及两个可逆的层板金属离子氧化/还原和PO<sub>4</sub> <sup>3-</sup>与O-H基团的配体交换过程。

Sun B, Hao X G, Wang Z D, et al.

Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis

[J]. J. Hazard. Mater., 2012, 233: 177

[本文引用: 1]

Yang Y Y, Du X, Abudula A, et al.

Highly efficient defluoridation using a porous MWCNT@NiMn-LDH composites based on ion transport of EDL coupled with ligand exchange mechanism

[J]. Sep. Purif. Technol., 2019, 223: 154

[本文引用: 2]

Cai J, Zhang Y, Pan B, et al.

Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger

[J]. Water Res., 2016, 102: 109

DOI      PMID      [本文引用: 1]

Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application.Copyright © 2016 Elsevier Ltd. All rights reserved.

Du X, Sun X, Zhang H, et al.

A facile potential-induced in-situ ion removal trick: fabrication of high-selective ion-imprinted film for trivalent yttrium ion separation

[J]. Electrochim. Acta, 2015, 176: 1313

[本文引用: 1]

Li C, Chen N, Zhao Y, et al.

Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: Sorption capability and mechanism

[J]. Chemosphere, 2016, 163: 81

DOI      PMID      [本文引用: 1]

In this study, an effective defluoridation adsorbent was developed by depositing polypyrrole (PPy) on granular peanut shell biological carbon (BC) via in situ chemical oxidative polymerization. The variables of defluoridation process (i.e., adsorbent dosage, fluoride solution pH, and anionic interference) were tested. The mechanism was determined by isotherm and kinetic studies, Brunauer-Emmett-Teller (BET) method, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and automatic titration. The PPy-grafted BC (PPy/BC) composite performed commendably from pH 2.0 to 10.0, and exhibited high selectivity for fluoride in the presence of several co-existing anions. The experimental data were described well by a Langmuir isotherm curve, and the maximum adsorption capacity was 17.15 mg g(-1). Kinetic studies illustrated the adsorption process was accomplished via surface adsorption as well as by intraparticle diffusion. In addition, mesoporous diffusion was the rate-controlling step in intraparticle diffusion process. BET and SEM analysis revealed the sponge-like polymer adhered to the BC and plugged the pores. XPS, FTIR, and SEM confirmed that fluoride removal was accomplished via the replacement of doped ionizable chloride ions (Cl(-)) coupled with positively charged nitrogen (N(+)), computation of XPS data enabled the formulation of a three-layer-deep hypothesis for PPy. Copyright © 2016 Elsevier Ltd. All rights reserved.

/