Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (11): 861-867    DOI: 10.11901/1005.3093.2016.134
  论文 本期目录 | 过刊浏览 |
溶剂的溶解度对CZTS颗粒性能影响的研究
蒋诗旭1,周超2,张天财2,高延敏1
1. 江苏科技大学 先进焊接技术省级重点实验室 镇江 212003
2. 上海船舶工艺研究所 上海 200032
Effect of Solubility Parameter of Alcohols Solvents on Performance of Cu2ZnSnS4 Particles
Shixu JIANG1,Chao ZHOU2,Tiancai ZHANG2,Yanmin GAO1,*
1. Jiangsu Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2. Shanghai Shipbuilding Technology Research Institute, Shanghai, 200032, China
引用本文:

蒋诗旭, 周超, 张天财, 高延敏. 溶剂的溶解度对CZTS颗粒性能影响的研究[J]. 材料研究学报, 2016, 30(11): 861-867.
Shixu JIANG, Chao ZHOU, Tiancai ZHANG, Yanmin GAO. Effect of Solubility Parameter of Alcohols Solvents on Performance of Cu2ZnSnS4 Particles[J]. Chinese Journal of Materials Research, 2016, 30(11): 861-867.

全文: PDF(2412 KB)   HTML
摘要: 

通过溶剂热法, 以含有PVP的醇类作溶剂, 以CuCl22H2O、Zn(Ac)22H2O、SnCl45H2O作金属源, 硫脲作硫源, 在一定条件下反应, 通过XRD、Raman、SEM、EDS、TEM、UV-Vis以及电化学分析系统研究醇类溶剂溶解度对CZTS颗粒的物相、结构、形貌以及光电性能的影响。结果表明: 所选溶剂溶解度不同, 对得到的CZTS颗粒的结晶性、形貌、原子比以及光电性能均有相应的影响; 当选择溶解度为32.1的乙二醇作溶剂时, 合成的颗粒结晶性较好, 颗粒形貌为表面嵌有薄片的微球, 颗粒表面缺陷形态为贫铜富锌结构, 光学带隙为1.47 eV, 与太阳能电池所需的最佳带隙接近, 薄膜电阻率为45.86 Ωm。

关键词 材料合成与加工工艺溶剂热法溶解度醇类溶剂CZTS    
Abstract

Cu2ZnSnS4 (CZTS) particles were synthesized by a facile solvothermal method in polyvinylpyrrolidone (PVP) containing alcohols solvent, with CuCl22H2O, Zn(Ac)22H2O and SnCl45H2O as metal precursor, and thiourea as sulfur source, respectively. The effect of the variation of solubility parameter of alcohols solvents on crystal structure, composition, morphology and absorption spectra of the synthesized CZTS particles were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy(EDS), UV-Vis spectroscopy and electrochemical analyzer. The results reveal that the solubility parameter of alcohols solvent has a certain influence on the crystallization, morphology, atomic ratios and photoelectric properties of the as-synthesized CZTS particles. The optimum alcohols solvent is ethylene glycol.The crystallization of CZTS particles synthesized under the above condition is pure and complete, and the CZTS particles with flaky facets are uniform and mono-dispersed. The atomic ratio of elements for CZTS particles is close to stoichiometric coefficient and the band gap of the products is about 1.47 eV, which is close to the optimum value for solar photoelectric conversion. The resistivity of CZTS is 45.86 Ωm.

Key wordssynthesizing and processing techniques for materials    solvothermal method    solubility parameter    alcohols solvent    CZTS
收稿日期: 2016-03-14     
图1  不同溶解度的醇类溶剂中合成的CZTS颗粒XRD图
图2  不同溶解度的醇类溶剂中合成的CZTS颗粒Raman图
图3  不同溶解度的醇类溶剂中合成的CZTS颗粒SEM图
图4  不同溶解度的醇类溶剂中合成的CZTS颗粒TEM图
Sample Cu/% Zn/% Sn/% S/% Cu/Zn/Sn/S
EG 21.12 14.63 12.83 51.42 1.7/1.2/1/4
DEG 21.74 11.71 14.63 51.92 1.9/1/1.2/4.4
TEG 24.48 11.41 12.59 51.52 2.1/1/1.1/4.5
表1  不同溶解度的醇类溶剂中合成的CZTS颗粒原子比
图5  不同溶解度的醇类溶剂中合成的CZTS颗粒原子比变化趋势图
图6  CZTS颗粒的紫外-可见光吸收光谱图
图7  不同溶解度的醇类溶剂中合成的CZTS颗粒制备成薄膜后的I-V曲线
图8  醇类溶剂溶解度与CZTS颗粒电阻率之间的关系
Sample Preparation
condition
Film area
/cm2
Thickness
/cm
Resistivity
/Ωm
CZTS-1 EG 0.368 0.13 45.86
CZTS-2 DEG 0.323 0.15 50.79
CZTS-3 TEG 0.472 0.12 71.26
表2  不同溶解度的醇类溶剂中合成的CZTS颗粒电阻率
1 A. G. Kannana, T. E. Manjulavallia, J.Chandrasekaranb, Influence
2 of solvent on the properties of CZTS nanoparticles, Procedia Engineering, 141, 15(2016)
2 V. A. Madiraju, K. Taneja, M. Kumar, R. Seelaboyina, CZTS synthesis in aqueous media by microwave irradiation, Journal of Materials Science, 27(4), 3152(2016)
3 J. Henrya, K. Mohanraja, G. Sivakumarb, Electrical and optical properties of CZTS thin films prepared by SILAR method, Journal of Asian Ceramic Societies, 4(1), 81(2016)
4 W. H. Zhou, Y. L. Zhou, J. Feng, J. W. Zhang, S. X. Wu, X. C. Guo, X. Cao, Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries, Chemical Physics Letters, 546, 115(2012)
5 H. C. Jiang, P. C. Dai, Z. Y. Feng, W. L. Fan, J. H. Zhan, Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4, Journal of Materials Chemistry, 22(15), 7502(2012)
6 S. Chet, G. P. Matthew, A. Vahid, G. Brian, K. Bonil, A. K.Brian, Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics, Journal of the American Chemical Society, 131(35), 12554(2009)
7 X. T. Lu, Z. B. Zhuang, Q. Peng, Y. D. Li, Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor, Chem. Commun., 47, 3141(2011)
8 M. Li, W. H. Zhou, J. Guo, Y. L. Zhou, Z. L. Hou, J. Jiao, Z. J. Zhou, Z. L. Du, S. X. Wu, Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method, J. Phys. Chem. C, 116, 26507(2012)
9 HUANG Xianghong, The relationship between the selection of solvent recrystallization and solubility parameter, Chem. 1, 35(1999)
9 (黄向红, 重结晶的溶剂选择与溶解度参数之间的关系, 化学通报, 1, 35(1999))
10 B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737(1991)
11 C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=Sulfur, Selenium, Tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, 115(19), 8706(1993)
12 Z. Q.Li, J. H. Shi, Q. Q. Liu, Y. W. Chen, Z. Sun, Z. Yang, S. M. Huang, Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires, Nanotechnology, 22(26), 265615(2011)
13 S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solarcell, Advanced Energy Materials, 2(2), 253(2012)
14 P. C. Dai, X. N. Shen, Z. J. Lin, Z. Y. Feng, H. Xu, J. H. Zhan, Band-gap tunable (Cu2Sn)x/3Zn1–xS nanoparticles for solar cells, Chemical Communications, 46(31), 5749(2010)
15 L. Choubrac, A. Lafond, C. G. Deudon, Y. Moelo, S. Jobic, Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: from the stoichiometric to the copper-poor compounds, Inorganic Chemistry, 51(6), 3346(2012)
16 CAI Qian, XIANG Weidong, LIANG Xiaojuan, The research status of Cu2ZnSnS4 nanocrystal, Silicate Bulletin, 30(6), 1333(2012)
16 (蔡倩, 向卫东, 粱晓娟, Cu2ZnSnS4纳米晶体的研究现状, 硅酸盐通报, 30(6), 1333(2012))
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[11] 王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
[12] 刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
[13] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[14] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.
[15] 董伟霞, 赵高凌, 包启富, 顾幸勇. Ca/Ti摩尔比对CaTiO3枝晶结构和光催化性能的影响[J]. 材料研究学报, 2017, 31(4): 279-284.