Please wait a minute...
 Home  IMR Journals Subscription Advertisement Contact us 中文
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Downloaded  |  Most Cited
Chin J Mater Res    2009, Vol. 23 Issue (4) : 337-342     DOI:
论文 |
Molecular dynamics simulation of  β--SiC nanowire under uniaxial tension
HAN Tongwei 1;2;   HE Pengfei 1;   WANG Jian 2;  ZHENG Bailin 1
1.School of Aerospace Engineering and Applied Mechanics; Tongji University; Shanghai 200092; China
2.The Queen's University of Belfast Belfast UK BT9 5AH
Download: PDF(1351 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The tension mechanical properties of the [001]  β--SiC nanowires with different cross--sections were investigated using molecular dynamics simulation with Tersoff bond--order interatomic potential. The stress--strain curves were obtained and analyzed in order to elucidate the scale effect on the mechanical properties of the nanowires. The simulation results show that the  β--SiC nanowires exhibit large plastic deformation for at least 11% under axial strain at room temperature, which is rarely observed for their macro counterparts
especially at low temperature. It is also found that the influence of the cross section size of the nanowires on the mechanical properties is remarkable; with increasing of the size the tensile strength and Young's modulus of the nanowires increase.

Keywords foundational discipline in materials science      tension mechanical properties      molecular dynamics      β--SiC      scale effects      nanowire     
:  TB321  

Supported by National Natural Science Foundation of China No.10472084.

Corresponding Authors: HE Pengfei     E-mail:
Issue Date: 12 August 2009
E-mail this article
E-mail Alert
Articles by authors
HAN Tong-Wei
HE Peng-Fei
WANG -Jian
Cite this article:   
HAN Tong-Wei,HE Peng-Fei,WANG -Jian, et al. Molecular dynamics simulation of  β--SiC nanowire under uniaxial tension[J]. Chin J Mater Res, 2009, 23(4): 337-342.
URL:     OR
1 ZHANG Lide, MOU Jimei, NanoMaterial and Nanostructure (Beijing, Science Press, 2002) p.27
(张立德, 牟季美, 纳米米材料和纳米结构 (北京, 科学出版社, 2002) p.27)
2 ZHUJing, NanoMaterial and NanoDevice, (Beijing, Tsinghua Publishing Company, 2003) p.4
(朱 静, 纳米材料和器件, 第一版, (北京, 清华大学出版社, 2003) p.4)
3 M.P.Allen, D.J.Tildesley, Computer Simulation of Liquids (Oxford, Clarendon Press, 1991) p.71–82
4 XU Zhou, WANG Xiuxi, LIANG Haiyi, Molecular dynamics simulation of the strain rate effect and size effect for Cu nanowire, Chinese Journal of Materials Research, 17(3), 262(2003)
(徐洲, 王秀喜, 梁海弋, 铜纳米丝的应变率和尺寸效应的分子动力学模拟, 材料研究学报,17(3), 262(2003))
5 Jakob Schiøtz, Karsten W. Jacobsen, A Maximum in the Strength of Nanocrystalline, Science, 301(5), 1357(2003)
6 D.L.Chen, T.C.Chen, Mechanical properties of Au nanowires under uniaxial tension with high strain–rate by molecular dynamics, Nanotechnology, 16(12), 2972(2005)
7 R.Komanduria, N.Chandrasekarana, L.M.Raff, Molecular dynamics (MD) simulation of uniaxial tension of some single–crystal cubic metals at nanolevel, International Journal of Mechanical Sciences, 43(10), 2237(2001)
8 S.J.A.Koh, H.P.Lee, C.Lu, Q.H.Cheng, Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain–rate effects, Physical Review B, 72(8), 2237(2005)
9 S.J.A.Koh, H.P.Lee, Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires, Nanotechnology, 17(14), 3451(2007)
10 H.A.WU, Molecular dynamics study on mechanics of metal nanowire, Mechanics Research Communications, 33(1), 9(2006)
11 Y.H.Wen, Z.H.Zhua, G.F.Shao, R.Z.Zhu, The uniaxial tensile deformation of Ni nanowire: atomic–scale computer simulations, Physica E, 27(1–2), 113(2005)
12 D.Wolf, V.Yamakov, S.R.Phillpot, A.Mukherjee, H.Gleiter, Deformation of nanocrystalline materials by molecular–dynamics simulation: relationship to experiments Acta Materialia, 53(1), 1(2005)
13 D.X.Wang, J.W.Zhao, S.HU, X.Pin, S.Liang, Y.H.Liu, S.Y.Deng, Where, and How, Does a Nanowire Break? Nano Letters, 7(5), 1208(2007)
14 Lin YUAN, Debin SHAN, Bin GUO, Molecular dynamics simulation of tensile deformation of nano–single crystal aluminum,Journal of Materials Processing Technology, 184(1–3), 1(2007)
15 J.B.Casady, R.W.Johnson, Status of silicon carbide (SiC) as a wide–bandgap semiconductor for high–temperature application: A review, Solid–State Electron, 39(10), 1409(1996)
16 Daisuke Nakamura, Itaru Gunjishima, Satoshi Yamaguchi, Tadashi Ito, Atsuto Okamoto, Hiroyuki Kondo, Shoichi Onda, Kazumasa Takatori, Ultrahigh–quality silicon carbide single crystals, Nature, 430(7003), 1009(2004)
17 M.Schaible, Empirical Molecular Dynamics Modeling of Silicon and Silicon Dioxide: A Review, Critical Reviews in Solid State and Materials Science, 24(4), 265(1999)
18 H.Kikuchi, R.K.Kalia, A.Nakano, P.Vashishta, P.S.Branicio, Brittle dynamic Fracture of Crystalline Cubic Silicon Carbide (3C–SiC) via Molecular Dynamics Simulation, Journal of Applied Physics, 98(10), 103524(1–4)(2005)
19 K.Mizushima, M.J.Tang, S.Yip, Toward multiscale modelling: the role of atomistic simulations in the analysis
of Si and SiC under hydrostatic compression, Journal of Alloys and Compounds, 279(1), 70(1998)
20 L.J.Porter, J.Li, S.Yip, Atomistic modeling of finite–temperature properties of β–SiC. I. Lattice vibrations,
heat capacity, and thermal expansion, Journal of Nuclear Materials, 246(1), 53(1997)
21 F.Gao, W.J.Weber, M.Posselt, V.Belko, Atomistic study of intrinsic defect migration in 3C–SiC, Physical Review B, 69(24), 245205(2004)
22 J.Tersoff, Modeling solid–state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, 39(8), 5566(1989)
[1] ZHU Liang, WANG Jing, LI Xiaohui, SUO Hongbo, ZHANG Yiliang. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. Chinese Journal of Materials Research, 2015, 29(9): 714-720.
[2] CHEN Yang, QIAN Cheng, SONG Zhitang, MIN Guoquan. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. Chinese Journal of Materials Research, 2014, 28(7): 509-514.
[3] YU Guiqin, LIU Jianjun, LIANG Yongmin. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. Chinese Journal of Materials Research, 2014, 28(6): 448-454.
[4] WANG Xiaogang, LI Yueyi, WANG Hailan, ZHOU Cunlong, HUANG Qinxue. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. Chinese Journal of Materials Research, 2014, 28(4): 308-313.
[5] YAO Wu,WU Mengxue,WEI Yongqi. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System[J]. Chinese Journal of Materials Research, 2014, 28(3): 197-203.
[6] WANG Ruwu,LIU Jing,GAN Zhanghua,ZENG Chun,ZHANG Fengquan. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)[J]. Chinese Journal of Materials Research, 2014, 28(3): 204-210.
[7] ZHANG Guangping,LI Menglin, WU Ximao, LI Chunhe, LUO Xuemei. Research Progress on Effect of Length Scale on Electrical Resistivity of Metals[J]. Chinese Journal of Materials Research, 2014, 28(2): 81-87.
[8] LI Lei** QIN Ke ZHANG Haitao ZHAO Zhihao ZHU Qingfeng ZUO Yubo
CUI Jianzhong. Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy[J]. Chinese Journal of Materials Research, 2014, 28(2): 126-132.
[9] WANG Yanen** WEI Qinghua,YANG Mingming,WEI Shengmin,. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA[J]. Chinese Journal of Materials Research, 2014, 28(2): 133-138.
[10] LUO Sunyiming, ZHANG Jun, WANG Jiahe. Determination of Tension Softening Relationship of Concrete from Crack Length Measurement[J]. Chinese Journal of Materials Research, 2014, 28(11): 801-808.
[11] ZHOU Hongming, GENG Wenjun, LI Jian, YANG Jie, YAO Shuheng, SUN Wenjiao. Compatibility of LiODFB Electrolyte with LiNi0.5Mn1.5O4 as High-voltage Cathode Material[J]. Chinese Journal of Materials Research, 2014, 28(10): 775-780.
[12] CHEN Weiliang ZHANG Ning TANG Zhaohui DING Xueyong**. Extension and Application of Miedema’s Model in O and S Containing Melts and Alloys[J]. Chinese Journal of Materials Research, 2014, 28(1): 31-43.
[13] YU Qi CHEN Ping LU Chun. Numerical Simulation of Thermal Stress Distribution in CF/BMI Composite Subjected to Thermal Cycles[J]. Chinese Journal of Materials Research, 2012, 26(6): 583-589.
[14] ZHU Yiguo RONG Haibo. Kinetic Monte Carlo Simulation of Thin Film Growth Including Two--dimensional Ehrlich--Schwoebel Barrier[J]. Chin J Mater Res, 2012, 26(2): 119-124.
[15] MAO Zhigang TAN Lili ZHENG Feng HUANG Jiewen. Finite Element Analysis on Mechanical Behaviors of Nickel-Free Stainless Steel Coronary Stent[J]. Chin J Mater Res, 2012, 26(2): 125-131.
Full text



Copyright © 2014 Chinese Journal of Materials Research, All Rights Reserved.
Editorial Office: Acta Metallurgica Sinica, 72 Wenhua Rd., Shenyang 110016, China
Tel: +86-024-23971297,Fax: +86-024-83978072,E-mail:,
Powered by Beijing Magtech Co. Ltd