Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (7): 530-536    DOI: 10.11901/1005.3093.2018.639
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials
Shuang PAN,Xue ZHUANG,Bing WANG(),Lidan TANG,Liang LIU,Jingang QI
School of Materials Science and Engineering, Liaoning of Technology, Jinzhou 121000, China
Cite this article: 

Shuang PAN,Xue ZHUANG,Bing WANG,Lidan TANG,Liang LIU,Jingang QI. Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials. Chinese Journal of Materials Research, 2019, 33(7): 530-536.

Download:  HTML  PDF(6664KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Manganese dioxide powders were firstly prepared via electric pulse assisted redox method with KMnO4 and MnSO4 as raw material, then MnO2/C composite materials coated with different amounts of carbon were fabricated via liquid phase sintering with glucose as a carbon source. The effect of amount of coated carbon on the morphology, structure and electrochemical properties of the MnO2/C materials were investigated. Results show that the coated carbon could induce the transformation of crystallographic structure of MnO2 from γ-type into α-type. Under heating conditions glucose decomposed and coated on the surface of MnO2 particles, which could inhibit the grain growth and thus refine grains. When the preparation with the process parameters: glucose concentration was 1.5 g/L and the current density was 2 A·g-1, the prepared MnO2/C material presented the specific capacitance of MnO2 of 722.2 F·g-1, in other words, the carbon coating could increase the specific capacitance by 80%, in comparison with that of the blank ones. Furthermore, after 4000 charge-discharge cycles, the capacitance retention rate could still maintain 74.72%, displayed good electrochemical performance and cycling performance.

Key words:  composite material      carbon coated manganese dioxide      electric pulse assisted redox/liquid sintering method      electrochemical performance      mechanism analysis     
Received:  05 November 2018     
ZTFLH:  TQ426  
Fund: Liaoning Natural Science Foundation(2015020215);Liaoning Provincial University Talents Project(LJQ2015050);Liaoning Education Department General Project(L2035236)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.639     OR     https://www.cjmr.org/EN/Y2019/V33/I7/530

Fig.1  XRD pattern of MnO2 powders uncoated and coated
Fig.2  Field emission scanning electron microscope (FESEM) image and transmission electron microscope image of carbon coated MnO2 powders (a) C-0 ,(b) C-0.5, (c) C-1.5, (d) C-3, (e) C-5, (f) TEM image of C-1.5, (g) HRTEM image of C-1.5, (h) SAED pattern of SAED, (i) TEM enlarged view of C-1.5
Fig.3  Cyclic voltammetry (CV) curves of MnO2 and MnO2/C composites (a) the CV of C-0 and C-1.5 at the scan rate of 20 mV s-1 (b) the CV of C-1.5 at different scan rates
Fig.4  galvanostatic charge-discharge (GCD) curves of MnO2 and MnO2/C composites (a) the GCD of C-0 and C-1.5 at current density of 2 A g-1,(b) the GCD of C-1.5 at different current densities
Fig.5  Cycling performance curves of C-0 and C-1.5 composites
Fig.6  the EIS of C-0 and C-1.5
Fig.7  Reaction path between electrolyte and active material uncoated and coated
[1] Xing B L, Huang G, Zhan L J, et al. Research status and prospects of supercapacitor electrode materials [J]. Matererial News, 2012, 26(10): 21
[1] (刑宝林, 黄光, 谌伦建等. 超级电容器电极材料的研究现状与展望 [J]. 材料导报, 2012, 26(10): 21)
[2] Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexible supercapacitors [J]. Chemical Society Reviews, 2014, 45(26): 3303
[3] Borysiewicz M. A., Ekielski M., Ogorza?ek Z., et al. Highly transparent supercapacitors based on ZnO/MnO2 nanostructures [J]. Nanoscale, 2017, 9(22): 7577
[4] Xia X H, Chao D L, Zhang Y Q, et al. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage [J]. Small, 2016, 12(22): 3048
[5] Cao J, Li X, Wang Y, et al. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors [J]. Power Source, 2015, 293(20): 657
[6] Dubal S V, Patil G. Polyaniline-polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors [J]. Journal of Alloys and Compounds, 2013, 552(5): 240
[7] Kazemi S, Kiani M, Mohamadi R, et al. Metal-polyaniline nanofibre composite for supercapacitor applications [J]. Bulletin of Materials Science, 2014, 37(5): 1001
[8] Wei W, Cui X, Chen W, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes [J]. Chemical Society Reviews, 2011, 40(3): 1697
[9] Zhao Y, Ran W, He J, et al. High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability [J]. Small, 2015, 11(11): 1310
[10] Huang M, Mi R, Liu H, et al. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binderfree supercapacitor electrodes [J]. Power Source, 2014, 269(10): 760
[11] Yu Z, Duong B, Abbitt D, et al. Highly ordered MnO2 nanopillars for enhanced supercapacitor performance [J]. Advanced Materials, 2013, 25(24): 3302
[12] Li S, Qi L, Lu L, et al. Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutralaqueous electrolytes [J]. RSC Advanced, 2012, 2(8): 3298
[13] Jiang J, Li Y, Liu J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage [J]. Advanced Materials, 2012, 24(38): 5166
[14] Machefaux E, Verbaere A, Guyomard D. Preparation of nanowires of M substituted manganese dioxides (M=Al, Co, Ni) by the electrochemical hydrothermal method [J]. Journal of Physics and Chemistry of Solids, 2013, 67(5-6): 1315
[15] Chun K Y, Ryu C W, Kim K B. Onset mechanism of Jahn-Teller distortion in 4V LiMn2O4 and its suppression by LiM0.05Mn1.95O4 (M=Co, Ni)coating [J]. Journal of the Electrochemical Society, 2005, 152(4): A791
[16] Sun M, Tie J, Cheng G, et al. In situ growth of burl-like nickel cobalt sulfide on carbon fibers as high-performance supercapacitors [J]. Materials Chemical A, 2015, 3(1): 1730
[17] Su X, Yu L, Cheng G, et al. High-performance α-MnO2 nanowire electrode for supercapacitor [J]. Applied Energy, 2015, 153(1): 94
[18] Yang M Y, Ni P, Li Y, et al. Synthesis and electrochemical performance of β-MnO2 with semitubular morphology [J]. Materials Chemical Physical, 2010, 124(1): 155
[19] Kim Y J, Yang C M, Park K C, et al. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles [J]. Chemical Sustainable Chemical, 2012, 5(3): 535
[20] Cao F F, Wu X L, Xin S, et al. Facile synthesis of mesoporous TiO2-C nanosphere as an improved anode material for superior high rate 1.5V rechargeable Li ion batteries containing LiFePO4-C cathode [J]. Physical Chemistry C, 2010, 114(22): 10308
[21] Liu Y, Ai C C, Hu Y, et al. Research progress of supercapacitor carbon-coated metal oxide electrode materials [J]. Chemical Lindustry and Engineering Progress, 2013, 32(2): 1849
[21] (刘 洋, 艾常春, 胡 意等. 碳包覆金属氧化物作为超级电容器电极材料的研究进展 [J]. 化工进展, 2013, 32(2): 1849)
[22] YANG J, WANG B F, WANG K, et al. Si/C composites for high capacity lithium storage materials [J]. Electrochemical Solid-State Letterr, 2003, 6(8): A154
[23] Pan S, Wang B, Ma Z J, et al. Preparation and electrochemical performance of Al-doped manganese dioxide nanowires [J]. Piezoelectrics & Acoustooptics, 2019, 41(01): 72
[23] (潘 双, 王 冰, 马泽军等. 铝掺杂二氧化锰纳米线的制备及其电化学性能 [J]. 压电与声光, 2019, 41(01): 72)
[24] Jin E M, Lim J G, Jeong S M. Facile synthesis of graphene-wrapped CNT-MnO2 nanocomposites for asymmetric electrochemical capacitors [J]. Journal of Industrial and Engineering Chemistry, 2017, 54(25): 421
[25] Li J, Ma J, Gao Y, et al. Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes [J]. Materials Science and Engineering A, 2008, 490(1): 452
[26] Zhou X. In vitro degradation characteristic of carbon fiber reinforced polylactide (C/PLA) composite under pulsed electoimagnetic field [D]. Jinzhou: Liaoning University of Technology, 2016
[26] (周 想. 脉冲电磁场作用下碳纤维增强聚乳酸(C/PLA)复合材料的降解特性 [D]. 锦州: 辽宁工业大学, 2016)
[27] Zhang D. Effects and Mechanism of LaxSr1-xCryNi1-yO3 Powders' Exsolution Characteristics under Pulsed Current [D]. Jinzhou: Liaoning University of Technology, 2018
[27] (张 迪. 脉冲电流对LaxSr1-xCryNi1-yO3溶出特性的影响及其作用机理 [D]. 锦州: 辽宁工业大学, 2018)
[28] Fang L. The Preparation and Eelectrochemical Performance of MnO2 Assisted with Pulse Electromagnetic Field [D]. Jinzhou: Liaoning University of Technology, 2018
[28] (方 琳. 脉冲电磁场辅助制备二氧化锰及其电化学性能研究 [D]. 锦州: 辽宁工业大学, 2018)
[29] Liu K Y, Zhang Y, Zhang W, et al. Charge-discharge process of MnO2 supercapacitor [J]. Transactions of Nonfcrrous Metals Society of China, 2007, 17(3): 649
[30] Zhang X, Sun X, Zhang H, et al. Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve(OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application [J]. Electrochimica Acta, 2014, 132(03): 315
[1] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[2] PENG Zitong, GAO Yanrong, YAO Chu, YAO Junlong, ZHU Wenwen, XU Wen, JIANG Xueliang. Preparation and Photocatalytic Activity of Fe/Yb Co-doped Titanium Dioxide Hollow Sphere[J]. 材料研究学报, 2021, 35(2): 135-142.
[3] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[4] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[5] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[6] Pengfei ZHOU,Peng ZHANG,Yunhui DU,Yujie WANG,Cheng ZUO. Preparation and Electrochemical Properties of Li-rich Cathode Material Prepared by Spray Drying Method[J]. 材料研究学报, 2019, 33(7): 481-487.
[7] Rongzhen GAO, Xiaodong LI, Wenfeng LIU, Yanhong YIN, Shuting YANG. Synthesis and Li-storage Performance of Hierarchical Spheroid Composites of MgFe2O4/C[J]. 材料研究学报, 2018, 32(9): 713-720.
[8] Ziqing LI, Wenxiu HE, Yongqiang ZHANG, Huiying YU, Xingsheng LI, Bin LIU. Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene[J]. 材料研究学报, 2018, 32(8): 616-624.
[9] Aijun LI, Xiuyun CHUAN, Dubin HUANG, Xi CAO. KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor[J]. 材料研究学报, 2017, 31(5): 321-328.
[10] Huiying YU,Wenxiu HE,Yongqiang ZHANG,Shengli AN,Junhong LIU. Chemical Precipitation-reflux Synthesis and Discharge Performance of Composite of Nickel Hydroxide /Reduced Graphene Oxide[J]. 材料研究学报, 2017, 31(3): 226-232.
[11] Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI. Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition[J]. 材料研究学报, 2016, 30(9): 690-696.
[12] NIE Yanyan, SUN Xiaogang, CAI Manyuan, WU Xiaoyong, LIU Zhenhong, YUE Lifu. Graphitized Whisker-like Carbon Nanotubes as Electrodes for Supercapacitors[J]. 材料研究学报, 2016, 30(7): 538-644.
[13] ZHANG Hao, HUANG Xinjie, ZONG Zhifang, LIU Xiuyu. Preparation and Properties of SiO2 Based Hexadecanol-Palmitic Acid-Lauric Acid Microencapsulated Phase Change and Humidity Controlling Materials with Fine Particle Size[J]. 材料研究学报, 2016, 30(6): 418-426.
[14] Zhipeng PANG,Xiaogang SUN,Xiaoyuan CHENG,Xiaoyong WU,Qi FU. Effect of Carbon Nanotube Content on Electromagnetic Interference Shielding Performance of Carbon Nanotube-Cellulose Composite Materials[J]. 材料研究学报, 2015, 29(8): 583-588.
[15] Yunfeng TIAN,Zhen LI,Yang WANG,Ping ZENG,Lingyi JIANG. Preparation and Performance of a Phase Change Heat Storage Composite of Paraffin/Different Particle Sized Expanded Graphite[J]. 材料研究学报, 2015, 29(4): 262-268.
No Suggested Reading articles found!