Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (7): 502-510    DOI: 10.11901/1005.3093.2016.640
ARTICLES Current Issue | Archive | Adv Search |
Structure and Thermal Performances of Paraffin/Diatomite Form-stable Phase Change Materials
Sixie ZHAO, Hua YAN(), Yuntao LI, Hongtao WANG, Zhide HU
Department of Chemistry and Material Engineering, Logistic Engineering University, Chongqing 401311, China
Download:  HTML  PDF(3827KB) 
Export:  BibTeX | EndNote (RIS)      

The paraffin/diatomite form-stable phase change materials(PA/D-PCMs) was prepared by using solvent evaporation, diatomite as carrier and paraffin as phase change materials. The microstructure and thermal properties of PA/D-PCMs were characterized by SEM、FT-IR、DSC and TGA respectively. The results show that: Leakage of melting paraffin was hindered through both the hydrogen bonding and the capillary force of the pores of diatomite, hence PA/D-PCMs put up excellent thermal stability. At the same time, secondary pores of diatomite can restrict partial paraffin crystallization, crystallinity of which would be affected. In interior of diatomite there were a few conduction channels with intercommunication, which can enhance thermal conductivity of paraffin and accelerate paraffin heat storage and release. With increase of the paraffin content phonon scattering effect would become more fierce in X, Y and Z axis thermal conduction channel of PA/D-PCMs, so thermal conductivity of PA/D-PCMs diminish, but owning higher latent heat and crystallinity. In order to ensure PA/D-PCMs structure stable and have good thermal properties simultaneously, optimal paraffin fraction in the composite is 45%.

Key words:  material science      diatomite      paraffin/diatomite form-stable phase change materials      microstructure      crystallinity      thermal properties     
Received:  25 November 2016      Published:  24 August 2017
ZTFLH:  TQ314  
Fund: Supported by National Nature Science Foundation of China (No. 51272283)

Cite this article: 

Sixie ZHAO, Hua YAN, Yuntao LI, Hongtao WANG, Zhide HU. Structure and Thermal Performances of Paraffin/Diatomite Form-stable Phase Change Materials. Chinese Journal of Materials Research, 2017, 31(7): 502-510.

URL:     OR

Fig.1  Experimental apparatus of investigating curves of melting and frozen
Fig.2  Schematic plot for thermal conductivity test (a) and hotdisk probe (b)
Fig.3  Contact angles of DI-CA (a) and D3 (b)
Fig.4  SEM of DI-CP、DI-CA and PA/D-PCMs (a) DI-CP×2.7k, (b) DI-CP×5k, (c) DI-CA×2.3k, (d) DI-CA×5k, (e) PA/D-PCMs×2.7k, (f) PA/D-PCMs×5k
Fig.5  FT-IR spectra of PA、DI and PA/D-PCMs
Fig.6  External properties of sample at 20℃(a) and external properties of sample after heat leaching experiment (b)
  Fig.7 curve of weight loss ratio (a) and curve of weight loss rate (b)
Fig.8  DSC curve of PA/D-PCMs
Code Tonset/℃ Tpeak/℃ Tend/℃ ΔHD/Jg-1 ΔHT/Jg-1 Crystallinity/%
PA 50.5 61.5 66.5 212.9 212.9 -
D1 50.1 60.5 65.0 63.6 74.2 85.71
D2 50.0 60.1 64.8 75.8 85.1 89.07
D3 49.8 59.5 64.5 91.5 95.5 95.81
D4 50.3 59.4 64.3 96.8 104.3 92.76
Table 1  Melting temperature and latent heat of PA and PA/D-PCMs
Fig.9  Melting and frozen curves of D1、D3 and PA
Fig.10  Thermal conductivity of PA and PA/D-PCMs
Fig.11  Schematic of thermal conduction of diatomite (a) the state of diatomite and paraffin in the PA/D-PCMs; (b) thermal conduction on the X-Y plate; (c) thermal conduction on the Z axis direction
[1] Zalha B,Matl'Jn J M,Cabeza L F,et a1. Review on thermal energy storage with phase change: Material, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251
doi: 10.1016/S1359-4311(02)00192-8
[2] Zhang Hongsheng, Wang Nan, Zhu Dongsheng, et, al.Study on performance of Nano-copper/paraffin wax composite phase change material[J]. Material Review, 2011, 17(5): 173(张鸿声, 汪南, 朱冬生, 等. 纳米铜粉/石蜡复合相变储能材料的性能研究[J]. 材料导报, 2011, 17(5): 173)
[3] Zheng Han.Synthesis and properties of clay-based phase change materials[D]. Lanzhou: Lanzhou university of technology, 2012(郑翰. 黏土基复合相变储热材料的制备及性能表征[D]. 兰州: 兰州理工大学, 2012)
[4] Konuklu Y.Microencapsulation of phase change material with poly shell for thermal energy storage[J]. International Journal of Energy Research, 2014, 38(15): 2019
doi: 10.1002/er.3216
[5] Wang Xiaochen.Preparation and characterization of diatomite/paraffin form-stable phase change material[D]. Shengyang: Northeastern University, 2014(王小辰. 硅藻土/石蜡定形相变储能材料的制备与性能表征[D] . 沈阳: 东北大学, 2014)
[6] Zhang Hong, WU Xiaohua,WANG Xiaolei,et, al.Structure and properties of lauric acid/ cetyl alcohol/silicon dioxide composite phase change Material[J]. Journal of materials science& engineering, 2010, 28(5): 672(张鸿, 武晓华, 王晓磊, 等. 月桂酸/十六醇/二氧化硅定型相变材料的结构与性能[J]. 材料科学与工程学报, 2010, 28(5): 672)
[7] Min Li, Zhishen Wu, Jinmiao Tan.Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol-gel method[J]. Applied Energy, 2012, 92: 456
doi: 10.1016/j.apenergy.2011.11.018
[8] Huang Xue, CUI Yingde, YIN Guoqiang, et al.Preparation and performance of lauric acid-expanded graphite composite phase change materials[J]. CIESC Journal, 2015, 5(S1): 370(黄雪, 崔英德, 尹国强, 等. 月桂酸-膨胀石墨定型相变材料的制备及性能[J]. 化工学报, 2015, 5(S1): 370)
[9] Ma Feng, Li Fei, Chen Minghui, et al.Study on performance of palmitic acid-hexadecanol/expanded perlite composite phase change materials[J]. Acta Engerglae Solaris Sinica, 2010, 31(11): 1475(马烽, 李飞, 陈明辉等. 棕榈酸-十六醇/膨胀珍珠岩定型相变材料的性能研究[J]. 太阳能学报, 2010, 31(11): 1475)
[10] Li Yuntao, Yan hua, Wang Hongtao, et al. Characterization of microstructure and property for phase change materials of expanded graphite matrix composite[J]. Chinese Journal of materials research, 2016, 30(7): 5456(李云涛, 晏华, 汪宏涛, 余荣升. 膨胀石墨基复合相变材料的结构与性能研究[J].材料研究学报, 2016, 30(7): 5456)
[11] Fang Tang, Di Su, Yaojie, et al. Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials & Solar Cells, 2015, 141: 218
doi: 10.1016/j.solmat.2015.05.045
[12] Fu Lujun, Dong Faqin, He Ping, et al.Study on preparation and properties of capric—myristic acid/diatomite form—stable phase change energy storage materials[J]. Journal of functional material, 2013, 44(10): 1465(付路军, 董发勤, 何平, 等. 癸酸-肉豆蔻酸/硅藻土定形相变储能材料制备及性能研究[J]. 功能材料, 2013, 44(10): 1465)
doi: 10.3969/j.issn.1001-9731.2013.10.021
[13] Jiangshan Zhang, Xiang Zhang, Yazhen Wan.Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material[J]. Solar energy, 2012, 86: 1142
doi: 10.1016/j.solener.2012.01.002
[14] Biwan Xu, Zongjin Li.Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites[J]. Energy, 2014, 72: 371
doi: 10.1016/
[15] Xiangyu Li, Jay G. Sanjayan, John L.Wilson. Fabrication and stability of form-stable diatomite/paraffin phase change material composites[J]. Energy and Buildings, 2014, 76: 284
doi: 10.1016/j.enbuild.2014.02.082
[16] Song Xiulong, Kang Hong, Gao Xiaohua, et al.Preparation and properties of composite phase change material of diatomite/ n-octadecane with high enthalpy. Material review, 2015, 29(9): 40(宋秀龙, 康虹, 高向华, 等. 硅藻土吸附正十八烷高相变焓定型相变材料的制备及其性能研究[J]. 材料导报, 2015, 29(9): 40)
[17] Xi Guoxi, Yang Wenjie.Preparation and Study of Stearic Acid/Modified Kieselguhr Composite Phase Change Material[J]. Material review, 2009, 23(8): 45(席国喜, 杨文洁. 硬脂酸/改性硅藻土复合相变储能材料的制备及性能研究[J]. 材料导报, 2009, 23(8): 45)
[18] Radhakrishnan, R., Gubbins, K.E Free energy studies of freezing in slit pores: an order-parameter approach using Monte Carlo simulation[J]. Molecular Physics, 1999, 96(8): 1249
doi: 10.1080/00268979909483070
[19] Radhakrishnan R., Gubbins K.E.,Watanabe A., et Freezing of simple fluids in microporous activated carbon fibers: Comparison of simulation and experiment[J]. Chemical Physics, 1999, 111(19): 9058
doi: 10.1063/1.480261
[20] Chongyun Wang, Lili Feng,Wei Li, et, al. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials[J]. Solar Energy Materials & Solar Cells, 2012, 105: 21
doi: 10.1016/j.solmat.2012.05.031
[21] Li Chuanchang.Preparation and Property Control of Mineral-based Composite Thermal Storage Materials[D]. Changsha: Central south university, 2013(李传常. 矿物基复合储热材料的制备与性能调控[D]. 长沙: 中南大学, 2013)
[22] Yang Yuxiang, Chen Rongsan, Dai Anbang.A study on structure of local diatomite[J]. Acta Chimica Sinica, 1996, 54: 57(杨宇翔, 陈荣三, 戴安邦. 国产硅藻土结构的研究[J]. 化学学报, 1996, 54: 57)
[23] Chao You, Jueshi Qian, Jihui Qin, et al.Effect of early hydration temperature on hydration product and strength Development of magnesium phosphate cement(MPC)[J]. Cement and Concrete Research, 2015, 78: 179
doi: 10.1016/j.cemconres.2015.07.005
[24] Zhang Yi, Zhang Jingyan, Huang Bin, et al.Experimental test of thermal conductivity coefficient and heat transfer simulation analysis of fatty acids phase change material[J]. Journal of functional material, 2015, 14(3): 1950(张毅, 张菁燕, 黄斌, 等. 脂肪酸相变材料导热系数测试及相变传热过程的数值模拟[J]. 功能材料, 2015, 2015, 14(3): 1950)
doi: 10.3969/j.issn.1001-9731.2012.14.032
[25] Zhang Dong.Experimental study on the thermal conductivity of organic phase change composites[J]. Journal of building materials, 2008, 11(1): 42(张东. 有机相变蓄热复合材料导热性能的实验研究[J].建筑材料学报, 2008, 11(1): 42)
[26] Zhang Fan, Guo Yiping, Zhou Wei.Properties of Materials[M]. Shanghai: Shanghai Jiaotong University press, 2009(张帆, 郭益平, 周伟. 材料性能学[M]. 上海: 上海交通大学出版社, 2009)
[1] Ling XU, Zhenxing GUO, Dongmei ZHANG, Changqing SUN, Shuang ZHU, Bingda WANG, Yuxiu LI, Chuanyong CUI. Effect of Solution Temperature on Microstructure and Mechanical Property of High Temperature Alloy GH2787[J]. 材料研究学报, 2017, 31(7): 517-525.
[2] Yachao WANG, Jiangping ZHAO, Yuanyuan TONG, Jianxiong DING. Preparation and Flame-retartant Property of LaCl3 Doped Polyacrylamide/Silica Ash-based Flame Retardant Materials[J]. 材料研究学报, 2017, 31(5): 387-393.
[3] Zhengjun WANG, Xing ZHOU, Wenqiang XIAO, Jun BIAN, Daiqiang CHEN. Preparation and Properties of Composites PP/Graphite Sheets[J]. 材料研究学报, 2017, 31(4): 291-299.
[4] Bin XU,Chengyong MA,Li LI,Xiaoming XIAO,Jianfeng WANG. Effect of Heat Input on Microstructure and Property of Weld Joints of a 1200 MPa Grade HSLA Steel[J]. 材料研究学报, 2017, 31(2): 129-135.
[5] Hongbo ZHANG,Fengliang TAN,Zhiguo CHEN. Effect of Flash Allowance on Microstructure and Properties of Flash Butt Welded Joint for 510 MPa Wheel Steel[J]. 材料研究学报, 2017, 31(2): 152-160.
[6] Jun DAI,Hua YAN,Junjun GUO,Lianyong SANG,Xuemei WANG. Effects of Crystallinity on Degradation Properties of Polyethylene by Thermo-oxidation Aging[J]. 材料研究学报, 2017, 31(1): 41-48.
[7] Lei LEI,Yilong LIANG,Yun JIANG,Jun XU,Ming YANG. Effect of Quench Rate on the High Cycle Fatigue Property of 60Si2CrVAT Spring Steels[J]. 材料研究学报, 2017, 31(1): 65-73.
[8] Hongzhang AN,Kaijun WU,Ting XIAO,Changyong ZHAN,Ding REN. Effect of the Concentration of Hydrochloric Acid on the Microstructure and Si-H Bonds in Porous Silicon[J]. 材料研究学报, 2016, 30(9): 717-720.
[9] Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI. Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition[J]. 材料研究学报, 2016, 30(9): 690-696.
[10] Zhiqiang KANG,Xue YANG,Guohui FENG,Lin ZHANG. Effect of Bi-Content on Microstructure Evolution of Al-Bi Monotectic Alloy[J]. 材料研究学报, 2016, 30(8): 603-608.
[11] Jinfeng BI,Zulai LI,Quan SHAN,Yehua JIANG,He WEI,Yan JIAO. Investigation on High Temperature Deformation Behavior and Microstructure Evolution of Si-Mn-Cr-B Alloy Steel[J]. 材料研究学报, 2016, 30(8): 595-602.
[12] Jiang WANG,Weigang HUANG. Microstructure and Mechanical Properties of CrMoVNbFex High-entropy Alloys[J]. 材料研究学报, 2016, 30(8): 609-613.
[13] Tao NIU,Xinlang WU,Chenggang AN,Yongwen JIANG,Caixia ZHANG,Chen YU,Xiaoli DAI. Effect of Ultra-Fast Cooling on Microstructure and Performance of Thick X80 Pipeline Steel[J]. 材料研究学报, 2016, 30(8): 620-626.
[14] Yachao WANG,Jiangping ZHAO. Preparation and Microstructure of Chemical Modified Diatomite as Flame Retardant[J]. 材料研究学报, 2016, 30(7): 524-530.
[15] Wenjun QI,Xiaowei FENG,Wanghanbo LIU,Xiaohui LI. Microstructure and Mechanical Properties of Rolled-and Annealed-Mg-3Zn-2Gd Alloy[J]. 材料研究学报, 2016, 30(7): 531-537.
[1] . [J]. Chin J Mater Res, 2001, 15(2): 166 -170 .
[2] . [J]. Chin J Mater Res, 2003, 17(2): 201 -204 .
[3] . Interfacial attractor model of martensitic transformation[J]. Chin J Mater Res, 2005, 19(1): 84 -89 .
[4] . [J]. Chin J Mater Res, 2002, 16(2): 151 -157 .
[5] . [J]. Chin J Mater Res, 2005, 19(3): 287 -292 .
[6] . [J]. Chin J Mater Res, 2001, 15(1): 110 -116 .
[7] . Microstructure and properties os steelAl-Pb composite bearing plate prepared by spray forming and rolling[J]. Chin J Mater Res, 2004, 18(1): 102 .
[8] . [J]. Chin J Mater Res, 2003, 17(4): 384 -388 .
[9] . [J]. Chin J Mater Res, 2005, 19(2): 200 -206 .
[10] . [J]. Chin J Mater Res, 2005, 19(3): 272 -276 .