Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (7): 535-540    DOI: 10.11901/1005.3093.2014.012
Current Issue | Archive | Adv Search |
Tension-Compression Asymmetry of Single Crystal Superalloy DD10 under Low Cycle Fatigue Deformation
Zhidong FAN1,2,Dong WANG1,**(),Langhong LOU1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. University of Chinese Academy of Sciences, Beijing 100049
Cite this article: 

Zhidong FAN,Dong WANG,Langhong LOU. Tension-Compression Asymmetry of Single Crystal Superalloy DD10 under Low Cycle Fatigue Deformation. Chinese Journal of Materials Research, 2014, 28(7): 535-540.

Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The main objective of the present research aims at investigating effects of the cyclic number, temperature and strain amplitude on the tension-compression asymmetry behavior of single crystal (SX) superalloy DD10. Fully reversed LCF tests with Rε=-1 are conducted at 760℃ and 980℃ under various strain ranges, and some tests are interrupted after the 1st cycle and at the cyclic stress saturation stage to figure out the evolution of the tension-compression asymmetry and the dislocation configurations. Results show that this asymmetry behavior is affected by several factors, such as the stress field in matrix, temperature and the strain range, and these factors depict various effects in different parts of the LCF process. In the 1st cycle, the K value (the ratio of st to sc) is slightly above 1 in low strain range for both temperatures, due to the compress in matrix resulted from the negative lattice mismatch. With the increment of strain amplitude or cyclic number, the tension-compression asymmetry gets much severer: at 760℃ the K is above 1, whereas at 980℃ K is below 1. TEM observations reveal that this distinct asymmetry behavior arises mainly from the different motion modes of dislocations in γ′ phase, e.g. perfect dislocations at 760℃ and stacking fault at 980°C.

Key words:  metallic materials      single crystal superalloy      low cycle fatigue      asymmetry      dislocations     
Received:  12 January 2014     
Fund: *Supported by National Basic Research Program of China No. 2012AA03A513 and National Natural Science Foundation of China Nos. 51101160 & 51171193.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.012     OR     https://www.cjmr.org/EN/Y2014/V28/I7/535

Fig.1  Microstructure of the DD10 superalloy after heat treatment observed by optical microscope (a) and scanning electron microscope (SEM) (b)
Fig.2  Cyclic stress response curves of the DD10 superalloy at 760℃ (a) and 980℃ (b)
Fig.3  Tension-compression stress asymmetry of the DD10 superalloy at the 1st cycle (a) and the stage of stress saturation (b)
Fig.4  Dislocation configurations of the DD10 superalloy after the 1st cyclic loading (a) 760℃, ∆εtotal/2=0.7%; (b) 760℃, ∆εtotal/2=1.2%; (c) 980℃, ∆εtotal/2=0.4%; (d) 980℃, ∆εtotal/2=1.2%
Fig.5  Illustration of the stresses field in matrix to be expected when the misfit is negative
Fig.6  Dislocations configuration for specimens at cyclic stress saturation (a) 760℃, ∆εtotal/2=0.7%; (b) 980℃, ∆εtotal/2=0.4%
1 R. C. Reed, The Superalloys Fundamentals and Applications, (New York, Cambridge University Press, 2006) p.153
2 C. Lall, S. Chin, D.P. Pope,The orientation and temperature dependence of the yield stress of Ni3(Al, Nb) single crystals, Metallurgical and Materials Transactions A, 10A, 1323(1979)
3 U. L. a. E. N. A. Nitz,CRSS anisotropy and tension-compression asymmetry of a commercial superalloy, Acta Materialia, 46, 4769(1998)
4 Li Ying,Su Bin, Abnormal yield behavior and deformation mechanism of nickel base single crystal superalloy, Journal of Materials Engineering, (3), 45(2004)
4 (李 影, 苏 彬, 镍基单晶高温合金的反常屈服行为与变形机制, 材料工程, (3), 45(2004)
5 T. P. Gabb, J. Gyda,Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Part II. LCF, Metallurgical and Materials Transactions A, 17A 497(1984)
6 F. Jiao, D. Bettge, W. Osterle, J. Ziebs,Tension-compression asymmetry of the (001) single crystal nickel base superalloy SC16 under cyclic loading at elevated temperatures, Acta Materialia, 44(10), 3933(1996)
7 Y. Zhufeng, T. Xiande, Y. Zeyong, L. Haiyan,A crystallographic model for the orientation dependence of low cyclic fatigue property of a nickel-base single crystal superalloy, Applied Mathematics and Mechanics, 21(4), 415(2000)
8 M. Yamashita, K. Kakehi,Tension/compression asymmetry in yield and creep strengths of Ni-based superalloy with a high amount of tantalum, Scripta Materialia, 55(2), 139(2006)
9 D. Leidermark, J.J. Moverare, S. Johansson, K. Simonsson, S. Sj?str?m,Tension/compression asymmetry of a single-crystal superalloy in virgin and degraded condition, Acta Materialia, 58(15), 4986(2010)
10 B. H. Kear,Role of two-dislocation boundaries in the plastic deformation of FCC crystals, AIME Transactions, 224, 674(1962)
11 LI Ying,SU Bin, Cyclic deformation of single crystal nickel base superalloy DD6 at 760℃, Journal of Materials Engineering, (5), 1(2002)
11 (李 影, 苏 彬, 760℃下DD6单晶高温合金的循环形变, 材料工程, (5), 1(2002))
12 X. F. Ma, H. J. Shi, J. L. Gu, Z. X. Wang, H. Harders, T. Malow,Temperature effect on low-cycle fatigue behavior of nickel-based single crystalline superalloy, Acta Mech Solida Sin, 21(4), 289(2008)
13 V. Brien, B. Decamps,Low cycle fatigue of a nickel based superalloy at high temperature: deformation microstructures, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Proc., 316(1-2), 18(2001)
14 Y. D. Wang, E. D. Wu, S. C. Wang, W. H. Li,X-ray diffraction analysis on the thickness effect of γ/γ′ lattice mismatche in nickel base single crystal superalloy DD10, Acta Metall. Sin., 47(11), 1418(2011)
15 C. Liu, J. Shen, J. Zhang,Effect of withdrawal rates on microstructure and creep strength of a single crystal superalloy processed by LMC, J. Mater. Sci. Technol., 26, 306(2010)
16 M. G. Wang, S. G. Tian, X. F. Yu, B. J. Qian,Influences of element Re and temperatures on the lattice parameter and misfit of single-crystal nickel-based superalloys, Rare Metal Mat. Eng., 39(2), 268(2010)
17 F. Diologent, P. Caron, T. d'Almeida, S. Chambreland, A. Jacques, P. Bastie,Temperature dependence of lattice mismatch and γ′ volume fraction of a fourth-generation monocrystalline nickel-based superalloy, Int. J. Mater. Res., 97(8), 1136(2006)
18 Z. Chu, Y. Jinjiang, S. Xiaofeng, G. Hengrong, H. Zhuangqi,High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951, Materials Science and Engineering: A, 488(1-2), 389(2008)
19 H. C. Yu, Y. Li, X. R. Wu, X. G. Yang, D. Q. Shi,Isothermal LCF fatigue behaviors of a single crystal nickel base superalloy at high temperatures, Fracture Mech. Symp., 4, 57(2006)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
No Suggested Reading articles found!