材料研究学报, 2024, 38(9): 680-690 DOI: 10.11901/1005.3093.2023.474

研究论文

尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能

邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴,

安徽工业大学材料科学与工程学院 马鞍山 243002

Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide

SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin,

School of Material Science and Engineering, Anhui University of Technology, Maanshan 243002, China

通讯作者: 冒爱琴,副教授,maoaiqinmaq@163.com,研究方向为高熵材料的设计和功能化应用

责任编辑: 吴岩

收稿日期: 2023-09-21   修回日期: 2023-10-26  

基金资助: 安徽省高校自然科学研究重点项目(2023AH051104)
先进金属材料绿色制备与表面技术教育部重点实验室主任基金(GFST2022ZR08)

Corresponding authors: MAO Aiqin, Tel: 13855599146, E-mail:maoaiqinmaq@163.com

Received: 2023-09-21   Revised: 2023-10-26  

Fund supported: the Key Project of Natural Science Foundation of Anhui Provincial Universities(2023AH051104)
Director's Fund for Green Preparation and Surface Technology of Advanced Metal Materials, Ministry of Education(GFST2022ZR08)

作者简介 About authors

邵 霞,女,1998年生,硕士生

摘要

用溶液燃烧法合成一系列尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 (X = K、Mg、Zn和Co)高熵氧化物粉体,对其表征并研究了电化学性能。结果表明:上述高熵氧化物粉体均为单相尖晶石结构,形貌为多孔网状结构且组成元素分布均匀。其中(Cr0.2Fe0.2Mn0.2Ni0.2Zn0.2)3O4的储锂性能最优异,电流密度为200 mA·g-1循环150圈后可逆比容量高达1303 mAh·g-1;即使电流密度提高到1000 mA·g-1循环380圈后其可逆比容量仍达到1190 mAh·g-1 (高于理论比容量908 mAh·g-1)。4MZn电极优异的储锂性能归因于其较大的比表面积、介孔结构以及丰富的表面氧空位,使其具有较高的电导率(12.2 S·m-1)和较大的赝电容贡献率;同时,活性元素Zn的加入使4MZn电极在还原过程中生成Li-Zn合金使其比容量提高。

关键词: 金属材料; 尖晶石结构; 高熵氧化物; 无钴负极; 锂离子电池; 赝电容

Abstract

High-entropy oxides (HEOs) have attracted widespread attention as the next-generation anode materials for lithium-ion batteries (LIBs) due to their low cost and high theoretical capacity. In this work, for the first time, a series of spinel-type cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 (X = K, Mg, Zn) high-entropy oxide powders as anode materials for LIBs were synthesized via a solution combustion method. The microstructural features and electrochemical performance of the powders were systematically investigated in comparison with cobalt containing powders of (Cr0.2Fe0.2Mn0.2Ni0.2Co0.2)3O4. The results indicate that the prepared high-entropy oxide powders are all single-phase of spinel structures, with a porous reticular morphology and uniform distribution of constituent elements. When used as anode materials for LIBs, cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2Zn0.2)3O4 exhibits excellent lithium storage performance. After 150 cycles at a current density of 200 mA·g-1, its reversible specific capacity is up to 1303 mAh·g-1. Furthermore, after 380 cycles at a high current density of 1000 mA·g-1, the reversible capacity can still reach 1190 mAh·g-1 (both are higher than its theoretical capacity of 908 mAh·g-1). The reasons for the excellent lithium storage performance of 4MZn electrode are: high specific surface area, mesoporous structure, and abundant oxygen vacancies on the surface make it a high conductivity (12.2 S·m-1) and a large pseudo-capacitance contribution rate; At the same time, the addition of active element Zn causes the formation of Li-Zn alloy in the reduction process of 4MZn electrode, thereby increasing its specific capacity. This work provides a new design approach for exploring cobalt free high entropy energy storage materials with low cost and excellent electrochemical performance.

Keywords: metallic materials; spinel structure; high-entropy oxide; Co free anode; lithium-ion battery; pseudo-capacitance

PDF (11960KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690 DOI:10.11901/1005.3093.2023.474

SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. Chinese Journal of Materials Research, 2024, 38(9): 680-690 DOI:10.11901/1005.3093.2023.474

为了减轻环境污染和解决能源问题,开发高效和可再生能源迫在眉睫[1,2]。锂离子电池(Lithium-ion batteries,LIBs)的能量密度高、循环寿命长和成本较低,受到了极大地关注[3,4]。目前,高导电性和低成本的石墨是最常用的LIBs负极材料。但是,石墨有理论容量(372 mAh·g-1)较低、Li+传输不充分和潜在的Li金属沉积等不足[5]。因此,需要开发锂存储容量更高和循环稳定性优异的负极材料。过渡金属氧化物(Transition metal oxides,TMOs) Co3O4[6]、ZnO[7]、CuO[8]和Fe3O4[9]等的理论容量较高和成本较低,是最具吸引力的下一代LIBs负极材料。但是,TMOs的导电性较低、在锂化和脱锂期间发生的体积膨胀使电极严重粉碎和容量衰减加速[10,11]

高熵氧化物(High-entropy oxides,HEOs)有构型熵稳定的晶体结构和多主元协同效应等优点,受到极大的关注[12,13]。与岩盐和钙钛矿型储能材料相比,尖晶石型HEOs (理论容量高和独特的三维Li+传输通道)更有发展前景[14]。Wang等[15]以金属氧化物为原料用高温固相法制备的尖晶石型(FeCoNiCrMn)3O4 HEO,电流密度为500 mA·g-1循环300圈后其可逆比容量为402 mAh·g-1,电流密度大到2000 mA·g-1可逆比容量仍能达到180 mAh·g-1。(FeCoNiCrMn)3O4 HEO具有优异电化学性能的原因是,其丰富的表面氧空位能提高离子/电子传输能力和提供丰富的活性存储位点。Liu等[16]以金属硝酸盐为原料、以甘氨酸为燃料用溶液燃烧法制备的一系列不同钴含量的尖晶石型HEOs (CrFeMnNiCo x )3O4 (x = 2,3,4),电流密度为200 mA·g-1循环100圈其可逆比容量分别为467.8、574.1和506.2 mAh·g-1,电流密度大到2000 mA·g-1循环3000圈后可逆比容量分别为97.2、101.2和147.2 mAh·g-1,其优异的循环稳定性得益于高熵氧化物的晶格畸变效应和高熵效应的协同作用使其晶体结构稳定性提高。但是,Co是贵金属,资源有限。

非活性K和Mg元素能产生“旁观者效应”和防止氧化还原过程中活性物质的团聚,引入低价K+可产生电荷补偿效应,有望形成丰富的表面氧空位,从而提高电极材料的电子和离子传导性[17];活性Zn元素在还原过程中可能生成Li-Zn合金,从而使电极的比容量提高[7,18]。因此,尖晶石型无钴高熵氧化物有望成为下一代LIBs的新型负极材料。鉴于此,本文以金属硝酸盐为原料、以甘氨酸为燃料用溶液燃烧法制备一系列尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 (X = K、Mg、Zn)高熵氧化物,研究其作为LIBs负极材料的储锂特性。

1 实验方法

1.1 实验用试剂和材料

实验用化学试剂:海藻酸钠、导电炭黑、碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和六氟磷锂(LiPF6),以上为电池级。KNO3、Mg(NO3)2·6H2O、Zn(NO3)2·6H2O、Co(NO3)2·6H2O、Cr(NO3)3·9H2O、Fe(NO3)3·9H2O、Mn(NO3)2·4H2O、Ni(NO3)2·6H2O和C2H5NO2。以上为分析纯。

实验用材料:Celgard2300聚丙烯多孔膜和去离子水(自制)。

1.2 样品的制备

用溶液燃烧法制备一系列尖晶石型(Cr0.2Fe0.2Mn0.2-Ni0.2X0.2)3O4 (X = K、Mg、Zn和Co)高熵氧化物粉体。先将XNO3、Cr(NO3)3·9H2O、Fe(NO3)3·9H2O、Mn(NO3)2·4H2O和Ni(NO3)2·6H2O配置成0.625 mol·L-1的溶液,然后按照化学组成量取2 mL金属硝酸盐溶液于烧杯中混合均匀,然后将0.2867 g甘氨酸(甘氨酸与氧化剂(金属硝酸盐)的摩尔比为0.5∶1)加入混合溶液中搅拌均匀并在80℃烘至凝胶状,最后将其置于透明电气炉中在750℃保温30 min,空冷后得到(Cr0.2Fe0.2-Mn0.2Ni0.2X0.2)3O4粉体。将研磨后的粉体用蒸馏水洗涤和无水乙醇分别洗涤三次,烘干研磨得到粉体样品。将样品标记为4MX,其中M为Cr、Fe、Mn和Ni四种元素。

1.3 性能表征

用Rigaku Mini-Flex 600型X射线衍射仪分析物相,Cu Kα射线(λ = 0.154 nm),管电压和管电流分别为40 kV和100 mA,扫描范围为10°~70°,扫速为5 (°)/min,步长为0.02°;用ΣIGMA HV-01-043型扫描电子显微镜(Scanning electron microscopy,SEM,德国蔡司公司)分析样品的形貌和微观结构,并用Bruker Nano Xflash Detector 5010型能谱仪分析样品中的元素组成和分布情况;用JW-BK200型比表面及孔径分析仪测试样品的N2吸/脱附等温曲线,测试条件:液氮为吸附介质,相对压力P/P0 =0.0292~0.9931,用Brunauer-Emmett-Teller (BET)模型和Barrett-Joyner-Halenda (BJH)模型计算比表面积和孔分布/孔容;用EscaLab 250 Xi型X射线光电子能谱仪测试样品表面化学价态和组成,以C1s (284.8 eV)为标准加以校正;用RTS-4型四探针测试仪测量电导率,测试条件:电流为4.28 μA,薄圆片直径12 mm,厚度0.1 mm (薄圆片制备:将制备工作电极的浆料用刀片均匀地涂覆在塑料基板上,随即在60℃下真空干燥12 h)。

使用(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 (X = K、Mg、Zn和Co)高熵氧化物粉体组装CR2025扣式半电池,研究其电化学性能。先将活性物质高熵氧化物粉体(4MX)、导电剂(Super P炭黑)和粘结剂(海藻酸钠)按7∶2∶1的质量比混合后充分研磨,然后将浆料均匀地涂覆在整洁的铜箔上置于60℃的真空干燥箱中干燥24 h。最后将铜箔切成直径为12 mm的圆形电极片,用8 MPa的压力保持30 s将电极片压实,制备出质量载荷为1.25~1.50 mg·cm2的电极。在充满高纯氩气的手套箱中组装扣式电池,电极片为工作电极,直径为15.6 mm的纯锂片为对电极,Celgard2300聚丙烯多孔膜为隔膜,将l mol·L-1的LiPF6溶于等体积的DMC、EC和DEC混合溶液中为电解液。

用Newware BTS-5V 10 mA型充放电测试仪对扣式电池进行充放电和恒电流间歇滴定技术(Galvanostatic intermittent titration technique,GITT)测试,充放电曲线和倍率性能的测试条件为:电压0.01~3 V;GITT测试条件为:电压0.01~3 V,电流密度为100 mA·g-1,弛豫时间为300 s;用CHI760E电化学工作站测试扣式电池的循环伏安(Cyclic voltammetry,CV)曲线和电化学阻抗(Electrochemical impedance spectroscopy,EIS),CV的测试条件为:电压0.01~3 V,扫速分别为0.1、0.2、0.5、0.8和1.0 mV·s-1;EIS谱的测试条件为:测试频率范围为0.01~1.0 × 105 Hz,扫速为0.5 mV·s-1,振幅为0.005 V。

2 结果和讨论

2.1 粉末样品的结构和形貌

图1a给出了用溶液燃烧法制备的4MX (X = K、Mg、Zn、Co)粉末样品的XRD谱。可以看出,四个样品的结构相似,其特征衍射峰与尖晶石结构CoCr2O4(PDF#22-1084)标准XRD谱的衍射峰相对应,属于Fd-3m(227)空间群,没有杂峰,晶格常数分别为0.8337、0.8340、0.8343、0.8309 nm。图1b给出了四个样品XRD谱的局部放大(32º~40º)。与4MCo相比,4MK、4MMg和4MZn的衍射峰均向小角度偏移。根据Bragg方程2dsinθ = (nλ分别为衍射级数和入射电子束的波长;θ为衍射角;d为晶面间距),其晶格常数变大。出现这种现象的原因,可能是K+ (0.133 nm)、Mg2+ (0.072 nm)和Zn2+ (0.074 nm)的离子半径大于(Co3+ (0.055 nm)和Co2+ (0.074 nm))引起晶格扩张。此外,电荷补偿效应较大的K+的引入使部分低价态过渡金属元素转化为高价态,使4MK、4MMg和4MZn的偏移程度相似[19]

图1

图1   样品的XRD谱和XRD谱的局部放大图、样品的SEM照片以及4MCo、4MK、4MMg、4MZn和4MZn各元素的EDS图

Fig.1   XRD patterns of the samples (a) and enlarge patterns (b) and SEM images of the samples ((c) 4MCo, (d) 4MK, (e) 4MMg, (f, g) 4MZn) and (h) EDS images of 4MZn


用Scherrer公式D = /Bcosθ (k为常数;λ为X射线的波长;B为衍射峰半宽高,θ为衍射峰对应的衍射角)和(311)、(220)和(440)晶面的衍射峰半高宽以及衍射角计算出4MCo、4MK、4MMg和4MZn的平均晶粒尺寸分别为23.5、13.7、17.6和20.8 nm。与4MCo相比,4MK、4MMg和4MZn的晶粒尺寸较小。较大的晶格常数能提供更大的Li+嵌入空间,有助于减轻Li+的嵌入/脱嵌引起的体积变化,在循环过程中可降低材料的应力和损伤从而提高负极材料的循环稳定性和延长电池的寿命;较小的晶粒尺寸有利于增大活性物质与电解液的接触面积和缩短Li+扩散路径,从而提高材料的电化学性能[20]

图1c~e分别给出了4MCo、4MK和4MMg的SEM照片,图1f、g给出了4MZn的不同放大倍数的SEM照片。可以看出,用溶液燃烧法制备的粉末样品为多孔网状结构,是样品制备过程中产生的气体所致。图1h给出了4MZn中各元素的EDS,可见各元素分布均匀且没有出现团聚,表明4MZn粉体的均匀性良好。

2.2 样品的N2/脱附性能

图2a~d给出了样品的N2吸/脱附等温线。可以看出,四个样品的N2吸附-脱附等温线均属于IV型等温线,有典型的H3滞后环,表明其均为介孔结构。从BJH孔径分布图的插图可见,孔径分布集中在0~20 nm,进一步证实样品中的孔以介孔为主。结构中丰富的介孔不仅能提供更多的Li+传输通道,还有利于与电解液接触和提供丰富的反应活性位点,从而使材料的储锂性能提高[13]

图2

图2   4MCo、4MK、4MMg和4MZn样品的N2吸/脱附等温线和BJH孔径分布

Fig.2   N2 adsorption-desorption isothermal curves, BJH pore size distribution of the samples (a) 4MCo, (b) 4MK, (c) 4MMg and (d) 4MZn


表1列出了样品的BET比表面积、孔体积、平均孔径和最可几孔径等数据。从表1可见,平均孔径与孔体积成正相关,孔体积越大则平均孔径越大。与4MK和4MZn相比,4MCo的比表面积最大,而4MMg的比表面积最小。

表1   样品的BET比表面积、孔体积、平均孔径和最可几孔径

Table 1  BET specific surface area, pore volume, average pore size, and most probable pore size of the samples

SamplesBET specific surface area / m2·g-1Pore volume / cm3·g-1Average pore size / nmMost probable pore size / nm
4MCo37.010.1111.822.27
4MK35.930.1010.782.99
4MMg28.170.1521.823.03
4MZn35.880.1212.942.30

新窗口打开| 下载CSV


2.3 XPS谱和电导率

用XPS谱进一步分析了样品的元素组成和对应的价态。图3a给出了样品的XPS全谱,可见样品中有Cr、Fe、Mn、Ni、O和Co (或K/Mg/Zn)等元素。图3b给出了Co 2p、K 2p、Mg 1s和Zn 2p的高分辨XPS (HRXPS)谱,其中780.3 eV (Co 2p3/2)和794.9 eV (Co 2p1/2)处的峰对应Co3+,782.1 eV (Co 2p3/2)和796.2 eV (Co 2p1/2)处的峰对应Co2+,Co2+/Co3+为46.4/53.6。同时,还出现两个明显的卫星峰,分别位于786.6 eV和802.8 eV[21,22]。292.1 eV (K 2p3/2)和294.8 eV (K 2p1/2)处的峰对应K+ [23];1303.5 eV (Mg 1s)处的峰对应Mg2+ [24];1021.1 eV (Zn 2p3/2)和1044.1 eV (Zn 2p3/2)处的峰对应Zn2+ [25]图3c给出了Cr2p的HRXPS光谱,其中576.0 eV (Cr 2p3/2)和585.6 eV (Cr 2p1/2)处的峰对应Cr3+,580.1 eV (Cr 2p3/2)和585.5 eV (Cr 2p1/2)处的峰对应Cr6+ [26],且4MX (X = K、Mg、Zn和Co)中Cr3+/Cr6+的比值分别为42.3/57.7、60.2/39.8、71.7/28.3和55.8/44.2,其中4MK的Cr6+含量最高,因为低价K+掺杂产生了电荷补偿效应。图3d给出了Fe 2p的HRXPS光谱,其中710.5 eV (Fe 2p3/2)和723.7 eV (Fe 2p1/2)处的峰对应Fe2+,713.0 eV (Fe 2p3/2)和726.5 eV (Fe 2p1/2)处的峰对应Fe3+,样品中Fe2+/Fe3+的比值分别为62.8/37.2、53.9/46.1、51.4/48.6和50.9/49.1。还出现了两个卫星峰,分别位于718.5和730.0 eV[24]图3e给出了Mn 2p的HRXPS光谱,其中641.4 eV (Mn 2p3/2)和653.3 eV (Mn 2p1/2)处的峰对应Mn3+,643.1 eV (Mn 2p3/2)和654.6 eV (Mn 2p1/2)处的峰对应Mn4+ [28,29],样品中Mn3+/Mn4+的比值分别为72.5/27.5、67.1/32.9、81.3/18.7和71.7/28.3。图3f给出了Ni 2p的HRXPS光谱,854.8 eV (Ni 2p3/2)和872.3 eV (Ni 2p1/2)处的峰对应Ni2+,856.6 eV (Ni 2p3/2)和873.7 eV (Ni 2p1/2)处的峰对应Ni3+,样品中Ni2+/Ni3+的比值分别为59.2/40.8、52.6/47.4、54.7/45.3和59.2/40.8。还出现两个卫星峰,分别位于861.3 eV和879.5 eV[30]。试样表面同种金属元素不同价态之比,列于表2图3g给出了O1s的HRXPS光谱,其中529.6、531.5和533.5 eV处的峰分别对应金属氧化物中的晶格氧(OL)、表面氧空位(OV)和吸附氧(OW)[31~33]。峰面积的计算结果表明,4MX (X = K、Mg、Zn和Co)样品表面的OV分别为18.4%、19.3%、43.6%和26.8%。这个结果与表2中试样表面金属阳离子价态的变化呈反比关系,与电荷补偿效应相符。丰富的氧空位不仅能降低Li+嵌入能垒,还能提高费米能级附近的态密度,有利于离子和电子传输[30];同时,氧空位附近的局部电场为离子/电子提供额外的库仑吸引力,可加快界面处的电荷转移而使电极材料的电导率和赝电容贡献率提高[34]。这表明,引入适量的氧空位有利于提高电极材料的电化学性能。

图3

图3   样品的XPS全谱和各元素的高分辨光谱和电导率

Fig.3   XPS survey spectra (a) and high resolution XPS (HRXPS) spectra of all elements of the samples (b~g); four probes conductivity (lattice parameter and oxygen vacancies (h) of the samples)


表2   样品的同种金属元素不同价态之比

Table 2  Ratio of different valence states of the same metal element in the samples

SamplesCr3+/Cr6+Fe2+/Fe3+Mn3+/Mn4+Ni2+/Ni3+Co2+/Co3+
4MCo55.8/44.250.9/49.171.7/28.359.2/40.846.4/53.6
4MK42.3/57.762.8/37.272.5/27.559.2/40.8K+
4MMg60.2/39.853.9/46.167.1/32.952.6/47.4Mg2+
4MZn71.7/28.351.4/48.681.3/18.754.7/45.3Zn2+

新窗口打开| 下载CSV


图3h给出了样品的电导率柱状图(插图为样品的晶格常数和氧空位),可见4MZn含有较高氧化态、晶格常数(0.8343 nm)较大的Zn2+ (具有较多的自由电子)和较多的氧空位(43.6%),从而使其具有较高的电导率(12.2 S·m-1)[35],可改善电池的动力学响应从而显著提高其电化学性能。

2.4 电化学性能

为了研究4MX (X = K、Mg、Zn和Co)负极的电化学性能,用其组装成扣式半电池并在0.01~3 V电压和不同电流密度下测试了循环性能和倍率性能。根据

C=nF3.6m

计算出4MX (X = K、Mg、Zn和Co)的理论比容量分别为900、862、976和923 mAh·g-1。式中C为比容量(mAh·g-1);n为每摩尔活性物质发生转化反应所含的电子数。4MCo的n = 8、4MK的n = 7.4、4MMg的n = 6.8和4MZn的n = 8.6[7]F为Faraday常数(F =96485 C·mol-1),m为相对分子质量[36]

图4a、c给出了4MX (X = K、Mg、Zn和Co)电极在不同电流密度下的循环性能。可以看出,电流密度为200 mA·g-1时这些电极的首圈库伦效率分别为74%、72%、79%和78%,经过多次循环后库伦效率均能达到99%。首圈库伦效率较低的主要原因是,界面反应消耗了Li+并生成了固体电解质界面膜(Solid electrolyte interface,SEI)。电流密度为200 mA·g-1时循环150圈后4MX (X = K、Mg、Zn和Co)电极的充放电比容量分别为1247/1275、429/435、1278/1303、519/525 mAh·g-1,其中4MZn和4MK在前50圈的比容量逐渐降低,归因于转化型TMOs电极的典型特征(循环早期SEI膜不稳定)[37];4MMg的比容量较低,可能是其理论容量和比表面积较低所致。4MK和4MZn的比容量远高于其理论容量。有研究表明:一些负极材料具有高于常规储锂机制(即嵌入,合金化和转化)预测的理论比容量,因为在首次放电过程中Li+均匀地插入材料主体然后转化为相分离的金属和Li2O,在金属和Li2O相紧密接触处容易产生界面电荷存储。这种界面电荷存储效应优先出现在氧化物等转化型负极材料中且粒径对其有很大的影响,尤其在纳米结构中起主导作用[38]。值得注意的是,4MZn具有比4MK更高的比容量,即使电流密度为1000 mA·g-1循环380圈后放电比容量仍能达到1190 mAh·g-1,远高于其理论比容量,因为其氧空位和电导率较高。与表3中的TMOs和HEOs负极材料相比,本文制备的4MZn电极的比容量更高和循环稳定性优异,还比含钴的负极材料高[9,15,16,39~41]

图4

图4   各电极在不同电流密度下的循环性能和倍率性能以及在0.1 mV·s-1和0.01~3.00 V条件下的循环伏安曲线和充放电曲线

Fig.4   Cycling performance of different current densities (a, c) and rate performance (b); CV curves at 0.1 mV·s-1 from 0.01 to 3.00 V of the electrodes (d) and charge-discharge profiles (e) of the electrodes


表3   近期报道的TMOs和HEOs负极的电化学性能

Table 3  Electrochemical performance of recently reported TMOs and HEOs anodes

MaterialMaterials synthesisC-rate / mA·g-1CycleCapacity / mAh·g-1Ref.
TiO2@Sn3O4Two-step hydrothermal methods6050659[41]
NiFe2O4@NiCo-LDHHydrothermal method300100636.9[40]
NiCo2O4Solution combustion synthesis50100664[39]
Fe3O4Bottom-up self-assembly approach100100867[9]
(FeCoNiCrMn)3O4High-temperature solid state reaction500300402[15]
(CrFeMnNiCo3)3O4Solution combustion synthesis200100574.1[16]
(Zn0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4Solution combustion synthesis2001501303This work

新窗口打开| 下载CSV


图4b给出了4MX (X = Co、K、Mg和Zn)电极在电流密度为200 mA·g-1循环150圈后测试的倍率性能。可以看出,4MZn的倍率性能极为优异,电流密度为3000 mA·g-1时4MX (X = K、Mg、Zn和Co)的可逆比容量分别为395、129、786和137 mAh·g-1,电流密度为100 mA·g-1时的容量保持率为32.1%、29.2%、60.1%和30.4%。

分析CV曲线和充放电曲线,可以进一步了解电极材料在充放电过程中的氧化还原反应。图4d给出了电极材料扫速为0.1 mV·s-1时前3圈的CV曲线,其中4MZn电极在首圈负扫时在0.16和0.76 V的两个还原峰对应金属阳离子的还原并伴随部分可逆Li2O、SEI膜以及Li-Zn合金的生成[12];首圈正扫时在1.56 V的氧化峰对应Li-Zn合金的分解和金属单质的氧化。在第一圈循环后强还原峰变弱,向更高的电压方向移动并在0.2、0.58和1.09 V处分裂成三个峰,意味着活化过程结束,电极的极化降低[12]。在二三圈循环中,与4MK、4MMg和4MCo电极相比4MZn电极在0.2 V处多一个还原峰,对应Li-Zn合金的生成使其可逆容量进一步提高。

图4e给出了电极电流密度为200 mA·g-1时的充放电曲线,放电过程和充电过程分别对应嵌锂(还原)和脱锂(氧化)过程。4MZn电极在0.1~0.5 V和0.5~1.0 V处的放电平台对应CV曲线0.16 V和0.76 V处宽化的还原峰;1.25~2.0 V处的放电平台对应CV曲线1.56 V处宽化的氧原峰。第二圈与第三圈的充放电曲线基本吻合,表明其可逆性良好。与4MK、4MMg和4MCo电极相比,4MZn电极的可逆比容量更高,与CV曲线一致。

2.5 反应动力学

为了进一步研究4MX (X = K、Mg、Zn和Co)电极储锂性能不同的原因,对循环前和循环3、150圈后的电极进行EIS测试,结果在图5a中给出,其中的插图为等效电路图。高频区的半圆表示电荷转移阻抗(Rct),低频区直线的斜率(σ)与Li+扩散系数相关[13]。从图5a可见,与其它电极相比4MZn电极的Rct较小。与其他电极相比,4MK的表面氧空位和电导率较低,可能使其初始电荷转移阻抗明显比其他电极的大。

图5

图5   电极的阻抗谱(插图为对应的等效电路图)、在低频区域ω-1/2Z′的关系图、恒电流间歇滴定技术测试过程中的充电/放电曲线和充电/放电过程中的Li+离子扩散系数

Fig.5   Nyquist plots of the electrodes (a), ω-1/2-Z′ lines (b), charge/discharge capacity curves during the GITT measurements (c), lithium-ion diffusion coefficients during the charge/discharge process (d) of as-prepared electrodes


图5b给出了ω-1/2Z′的关系。从图5b可见,随着循环圈数的增多σ逐渐变小且4MZn电极的σ最小。这表明Li+的扩散系数最大,是4MZn电极储锂性能更优异的原因,与循环性能一致。

图5c和d分别给出了用恒电流间歇滴定技术(GITT)测试的4MX (X = Co、K、Mg和Zn)电极的充电/放电曲线和计算出的锂离子扩散系数(DLi+)。从图5d可见,4MZn电极的DLi+ (数量级为10-5~10-10 cm2·s-1) 最高。其原因是,氧空位为Li+提供了更多的扩散通道和产生的局部电场,使周围的电荷不平衡而加速了电子传输和提高了反应动力学[42]

2.6 电极的储锂机制

测试不同扫速下的CV,研究了电极的储锂机制。图6a给出了4MZn电极扫速为0.1、0.2、0.5、0.8和1 mV·s-1时的CV曲线。可以看出,这些CV曲线形状相似,且氧化还原峰位差随着扫描速率的提高而增大[43]。峰值电流(ip)与扫描速率(v)的关系为

图6

图6   4MZn电极在不同扫速下的CV曲线、lg(ip)与lg(v)的关系曲线、1 mV·s-1时赝电容(蓝色区域)和扩散(红色区域)控制的贡献率以及不同扫描速率的赝电容贡献率

Fig.6   CV curves at different scan rates (a), linear relationship between peak current and scan rate (b), the overall current signal (solid red line) and pseudocapacitive current (shaded blue region) at 1 mV·s-1 scan rate (c), Pseudo-capacitive contribution (d) of the eletrodes at different scan rates


ip=avb

为了更直观,将 式(2)取对数得到

lgip=blgv+lga

式中a为常数,b为斜率(判断电极的储锂机制):b为0.5时是扩散控制的贡献;b为1时是赝电容控制的贡献。b为0.5~1则为扩散和赝电容共同控制。图6b给出了根据拟合线性关系计算出的b值,其中氧化峰和还原峰的b值分别为0.85和0.92。这表明,4MZn电极的转化反应由扩散和赝电容联合控制,其中赝电容占主导作用。

根据式

i(V)=k1v+k2v1/2

可计算特定扫描速率下的赝电容贡献率。式中i(V)为特定电压V下的电流(mA),v为扫描速率(mV·s-1),k1k2为使用在特定电压V测得的i(V)与v拟合的数值;k1v为赝电容贡献的电流;k2v1/2为扩散控制的电流。

图6c给出了扫描速率为1 mV·s-1时4MZn电极的赝电容贡献率。从图6d可知,随着扫描速率的提高赝电容贡献率随之提高。其原因是,扫描速率的提高使固相扩散反应迅速减小,而赝电容主要是表面反应,扫描速率的影响较小[44]。扫速为1 mV·s-1时4MCo、4MK、4MMg和4MZn的赝电容贡献率分别为88.2%、84.2%、95.9%、95.9%和93.9%,可见4MZn和4MMg电极的赝电容贡献率均高于90%。4MZn具有高达43.6%的氧空位和较高的晶格常数(0.8343 nm)以及电导率(12.2 S·m-1),较高的氧空位、晶格常数、电导率以及赝电容贡献率有利于提高材料的储锂性能和倍率性能[45],使4MZn电极具有优异的电化学性能。

3 结论

(1) 用溶液燃烧法可制备以介孔结构为主的多孔网状尖晶石型 (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 (X = Co、K、Mg和Zn)高熵氧化物负极材料。

(2) (Cr0.2Fe0.2Mn0.2Ni0.2Zn0.2)3O4具有最优异的储锂性能,电流密度为200 mA·g-1循环150圈后可逆比容量高达1303 mAh·g-1;即使电流密度大到1000 mA·g-1循环380圈后其可逆比容量仍能达到1190 mAh·g-1(均高于其理论比容量908 mAh·g-1)。

(3) 4MZn电极储锂性能优异的原因是,熵稳的晶体结构使循环稳定性提高;较高的比表面积、介孔结构以及丰富的表面氧空位使其具有较高的电导率(12.2 S·m-1)和较大的赝电容贡献率;加入活性元素Zn使4MZn电极在还原过程中生成Li-Zn合金,从而使其比容量提高。

参考文献

Zhang J J, Zhang L Y, Wang W, et al.

In situ irradiated X-ray photoelectron spectroscopy investigation on electron transfer mechanism in s-scheme photocatalyst

[J]. J. Phys. Chem. Lett., 2022, 13(36): 8462

DOI      PMID      [本文引用: 1]

S-scheme photocatalysts have demonstrated great potential in solar fuel production. To study the electron transfer pathways in S-scheme heterojunctions, in situ irradiated X-ray photoelectron spectroscopy (ISIXPS) is an effective and widely used technology. However, the mechanism of ISIXPS in identifying the electron transfer pathways in S-scheme heterojunction has not yet been elucidated. In this Perspective, the development process and the formation mechanism of S-scheme photocatalysts are first introduced. Afterward, the principles of XPS and ISIXPS measurements are thoroughly explained, and the applications of XPS and ISIXPS in confirming the interfacial electron transfer in S-scheme heterojunctions are discussed. Finally, suggestions for future research on the utilization of ISIXPS in S-scheme heterojunctions are proposed. This Perspective will provide deep insight into the electron transfer mechanism in S-scheme photocatalysts through ISIXPS.

Chen H, Qiu N, Wu B Z, et al.

A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries

[J]. RSC Adv., 2020, 10(16): 9736

[本文引用: 1]

Chen T Y, Wang S Y, Kuo C H, et al.

In operando synchrotron X-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications

[J]. J. Mater. Chem., 2020, 8A(41) : 21756

[本文引用: 1]

Ma L, Lyu S S, Dai Y, et al.

Lithium storage properties of NiO/reduced graphene oxide composites derived from different oxidation degrees of graphite oxide

[J]. J. Alloys Compd., 2019, 810: 151954

[本文引用: 1]

Augustyn V, Simon P, Dunn B.

Pseudocapacitive oxide materials for high-rate electrochemical energy storage

[J]. Energy Environ. Sci., 2014, 7(5): 1597

[本文引用: 1]

Reddy M V, Yu C, Fan J H, et al.

Molten salt synthesis and energy storage studies on CuCo2O4 and CuO·Co3O4

[J]. RSC Advances, 2012, 2(25): 9619

[本文引用: 1]

Wang L, Zhang G H, Liu Q H, et al.

Recent progress in Zn-based anodes for advanced lithium ion batteries

[J]. Mater. Chem. Front., 2018, 2(8): 1414

[本文引用: 3]

Zhang Q B, Wang J X, Xu D G, et al.

Facile large-scale synthesis of vertically aligned CuO nanowires on nickel foam: growth mechanism and remarkable electrochemical performance

[J]. J. Mater. Chem., 2014, 2A(11) : 3865

[本文引用: 1]

Lee S H, Yu S H, Lee J E, et al.

Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement

[J]. Nano Lett., 2013, 13(9): 4249

[本文引用: 3]

Sarkar A, Djenadic R, Usharani N J, et al.

Nanocrystalline multicomponent entropy stabilised transition metal oxides

[J]. J. Eur. Ceram. Soc., 2017, 37(2): 747

[本文引用: 1]

Li S, Peng Z J, Fu X L.

Zn0.5Co0.5Mn0.5Fe0.5Al0.5Mg0.5O4 high-entropy oxide with high capacity and ultra-long life for Li-ion battery anodes

[J]. J. Adv. Ceram., 2023, 12(1): 59

[本文引用: 1]

Sarkar A, Velasco L, Wang D, et al.

High entropy oxides for reversible energy storage

[J]. Nat. Commun., 2018, 9(1): 3400

DOI      PMID      [本文引用: 3]

In recent years, the concept of entropy stabilization of crystal structures in oxide systems has led to an increased research activity in the field of "high entropy oxides". These compounds comprise the incorporation of multiple metal cations into single-phase crystal structures and interactions among the various metal cations leading to interesting novel and unexpected properties. Here, we report on the reversible lithium storage properties of the high entropy oxides, the underlying mechanisms governing these properties, and the influence of entropy stabilization on the electrochemical behavior. It is found that the stabilization effect of entropy brings significant benefits for the storage capacity retention of high entropy oxides and greatly improves the cycling stability. Additionally, it is observed that the electrochemical behavior of the high entropy oxides depends on each of the metal cations present, thus providing the opportunity to tailor the electrochemical properties by simply changing the elemental composition.

Jia Y G, Chen S J, Shao X, et al.

Synergetic effect of lattice distortion and oxygen vacancies on high-rate lithium-ion storage in high-entropy perovskite oxides

[J]. J. Adv. Ceram., 2023, 12(6): 1214

[本文引用: 3]

Liu Z Y, Liu Y, Xu Y J, et al.

Novel high-entropy oxides for energy storage and conversion: from fundamentals to practical applications

[J]. Green Energy Environ., 2023, 8(5): 1341

[本文引用: 1]

Wang D, Jiang S D, Duan C Q, et al.

Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance

[J]. J. Alloys Compd., 2020, 844: 156158

[本文引用: 3]

Liu C, Bi J Q, Xie L L, et al.

High entropy spinel oxides (CrFeMnNiCox)3O4 (x = 2, 3, 4) nanoparticles as anode material towards electrochemical properties

[J]. J. Energy Storage, 2023, 71: 108211

[本文引用: 3]

Anh L T, Rai A K, Thi T V, et al.

Enhanced electrochemical performance of novel K-doped Co3O4 as the anode material for secondary lithium-ion batteries

[J]. J. Mater. Chem., 2014, 2A(19) : 6966

[本文引用: 1]

Xiao B, Wu G, Wang T D, et al.

High entropy oxides (FeNiCr-MnX)3O4 (X = Zn, Mg) as anode materials for lithium ion batteries

[J]. Ceram. Int., 2021, 47(24): 33972

DOI      [本文引用: 1]

High entropy oxides (HEOs) have attracted the attention of researchers due to their high theoretical specific capacity and structural stability. However, the effect of elements in HEOs on material properties is unknown. In this work, HEOs (FeNiCrMnZn)(3)O-4 and (FeNiCrMnMg)(3)O-4 were successfully synthesized and used as anode materials for lithium ion batteries. The effects of Zn and Mg on the properties of HEOs were studied from the aspects of crystal structure, micro morphology, and surface valence. Results show that Zn enhances the lithium storage performance of HEOs theoretically, which is verified in the later electrochemical performance tests. (FeNiCrMnZn)(3)O-4 is better than (FeNiCrMnMg)(3)O-4 in all aspects of rate properties, cycle performance, and electrochemical impedance spectroscopy. Therefore, the introduction of electrochemically active metals, such as Zn, can improve the performance of HEOs, thereby providing ideas for the subsequent design and application of HEOs.

Bérardan D, Franger S, Meena A K, et al.

Room temperature lithium superionic conductivity in high entropy oxides

[J]. J. Mater. Chem., 2016, 4A(24) : 9536

[本文引用: 1]

Li L Y, Hu G R, Cao Y B, et al.

Effect of grain size of single crystalline cathode material of LiNi0.65Co0.07Mn0.28O2 on its electrochemical performance

[J]. Electrochim. Acta, 2022, 435: 141386

[本文引用: 1]

Duan C Q, Tian K H, Li X L, et al.

New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries

[J]. Ceram. Int., 2021, 47(22): 32025

[本文引用: 1]

Wang X F, Liu G F, Tang C, et al.

A novel high entropy perovskite fluoride anode with 3D cubic framework for advanced lithium-ion battery

[J]. J. Alloys Compd., 2023, 934: 167889

[本文引用: 1]

Liu Z W, Li P, Suo G Q, et al.

Zero-strain K0.6Mn1F2.7 hollow nanocubes for ultrastable potassium ion storage

[J]. Energy Environ. Sci., 2018, 11(10): 3033

[本文引用: 1]

Biesinger M C, Payne B P, Grosvenor A P, et al.

Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni

[J]. Appl. Surf. Sci., 2011, 257(7): 2717

[本文引用: 2]

Liu H, Luo S H, Yan S X, et al.

High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material

[J]. Composites, 2019, 164B: 576

[本文引用: 1]

Liu C, Bi J Q, Xie L L, et al.

Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction

[J]. Mater. Today, 2023, 35: 106315

[本文引用: 1]

Lin Y F, Sun L, Hu J J, et al.

Ti-doped Fe2O3/carbon cloth anode with oxygen vacancies and partial rGO encapsulation for flexible lithium ion batteries

[J]. J. Alloys Compd., 2022, 924: 166441

Zhang C C, Wang L G, Zhao Y Z, et al.

Self-assembly synthesis of graphene oxide double-shell hollow-spheres decorated with Mn3O4 for electrochemical supercapacitors

[J]. Carbon, 2016, 107: 100

[本文引用: 1]

Zhang J B, Zhang L Y, Cheng Y, et al.

Construction of oxygen vacancies in δ-MnO2 for promoting low-temperature toluene oxidation

[J]. Fuel, 2023, 332: 126104

[本文引用: 1]

Liu X F, Xing Y Y, Xu K, et al.

Kinetically accelerated lithium storage in high-entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies

[J]. Small, 2022, 18(18): 2200524

[本文引用: 2]

Yan L, Zong L S, Zhang Z J, et al.

Oxygen vacancies activated porous MnO/graphene submicron needle arrays for high-capacity lithium-ion batteries

[J]. Carbon, 2022, 190: 402

[本文引用: 1]

Wang Y T, Jiang N, Pan D H, et al.

Controllable oxygen vacancy SnO2 - x anodes for lithium-ion batteries with high stability

[J]. Chem. Eng. J., 2022, 437: 135422

Bayraktar D O, Lökçü E, Ozgur C, et al.

Effect of synthesis environment on the electrochemical properties of (FeMnCrCoZn)3O4 high‐entropy oxides for Li‐ion batteries

[J]. Int. J. Energy Res., 2022, 46: 22124

[本文引用: 1]

Zhu Y M, Zhang L, Zhao B T, et al.

Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides

[J]. Adv. Funct. Mater., 2019, 29(34): 1901783

[本文引用: 1]

Osenciat N, Bérardan D, Dragoe D, et al.

Charge compensation mechanisms in Li‐substituted high‐entropy oxides and influence on Li superionic conductivity

[J]. J. Am. Ceram. Soc., 2019, 102(10): 6156

DOI      [本文引用: 1]

The charge compensation mechanisms that occur when Li+ substitutes a 2+ element in superionic conductor (MgCoNiCuZn)O high-entropy oxide have been studied using a combination of thermogravimetric analysis and X-ray photoemission spectroscopy. Depending on the concentration of Li+ in the compound, the charge compensation involves first partial oxidation of Co2+ into Co3+ for low fraction of Li+, and then a combination of both the oxidation of cobalt and the formation of oxygen vacancies for large fraction of Li+.

Xiang H Z, Xie H X, Chen Y X, et al.

Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4- δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries

[J]. J. Mater. Sci., 2021, 56(13): 8127

[本文引用: 1]

Zhang Y Y, Chen P, Wang Q Y, et al.

High‐capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure

[J]. Adv. Energy Mater., 2021, 11(31): 2101712

[本文引用: 1]

Kim H, Choi W, Yoon J, et al.

Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries

[J]. Chem. Rev., 2020, 120(14): 6934

DOI      PMID      [本文引用: 1]

To advance current Li rechargeable batteries further, tremendous emphasis has been made on the development of anode materials with higher capacities than the widely commercialized graphite. Some of these anode materials exhibit capacities above the theoretical value predicted based on conventional mechanisms of Li storage, namely insertion, alloying, and conversion. In addition, in contrast to conventional observations of loss upon cycling, the capacity has been found to increase during repeated cycling in a significant number of cases. As the internal environment in the battery is very complicated and continuously changing, these abnormal charge storage behaviors are caused by diverse reactions. In this review, we will introduce our current understanding of reported reactions accounting for the extra capacity. It includes formation/decomposition of electrolyte-derived surface layer, the possibility of additional charge storage at sharp interfaces between electronic and ionic sinks, redox reactions of Li-containing species, unconventional activity of structural defects, and metallic-cluster like Li storage. We will also discuss how the changes in the anode can induce capacity increase upon cycling. With this knowledge, new insights into possible strategies to effectively and sustainably utilize these abnormal charge storage mechanisms to produce vertical leaps in performance of anode materials will be laid out.

Mahboubi H, Masoudpanah S M, Alamolhoda S, et al.

Facile synthesis of spongy NiCo2O4 powders for lithium-ion storage

[J]. Sci. Rep., 2023, 13(1): 10228

DOI      PMID      [本文引用: 2]

Spongy NiCoO powders were prepared by solution combustion synthesis (SCS) method for lithium ions storage. The effects of combustion parameters including fuel type (L-lysine, glycine, and urea) and fuel amount on the lithium storage performance of NiCoO powders were analyzed by various characterization techniques. Single-phase NiCoO powders with extremely porous microstructure showed a strong drop of initial specific capacity up to 350 mAhg which was recovered up to 666 mAhg following 100 charge/discharge cycles. However, the NiCoO powders prepared by the urea and L-lysine fuels with the compacted microstructure showed the capacity loss without any recovery. The spongy NiCoO powders showed an acceptable capability rate performance (404 mAhg @ 400 mAg).© 2023. The Author(s).

Zhu L Y, Han T L, Ding Y Y, et al.

A metal-organic-framework derived NiFe2O4@NiCo-LDH nanocube as high-performance lithium-ion battery anode under different temperatures

[J]. Appl. Surf. Sci., 2022, 599: 153953

[本文引用: 1]

Chen X F, Huang Y, Zhang K C, et al.

Porous TiO2 nanobelts coated with mixed transition-metal oxides Sn3O4 nanosheets core-shell composites as high-performance anode materials of lithium ion batteries

[J]. Electrochim. Acta, 2018, 259: 131

[本文引用: 2]

Bian W S, Li H J, Zhao Z X, et al.

Entropy stabilization effect and oxygen vacancy in spinel high-entropy oxide promoting sodium ion storage

[J]. Electrochim. Acta, 2023, 447: 142157

[本文引用: 1]

Wu Y Z, Meng J S, Li Q, et al.

Interface-modulated fabrication of hierarchical yolk-shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage

[J]. Nano Res., 2017, 10(7): 2364

[本文引用: 1]

Xiao B, Wu G, Wang T D, et al.

High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries

[J]. Nano Energy, 2022, 95: 106962

[本文引用: 1]

Han X, Meng Q, Wan X, et al.

Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries

[J]. Nano Energy, 2021, 81: 105635

[本文引用: 1]

/