Please wait a minute...
Chin J Mater Res  2008, Vol. 22 Issue (6): 589-592    DOI:
论文 Current Issue | Archive | Adv Search |
High velocity compaction of ferrous powder
 WANG Jianzhong; QU Xuahui; YIN Haiqing; ZHOU Shengyu
State Key Laboratory for Advanced Metals and Materials; School of Materials Science & Engineering;
University of Science & Technology Beijing; Beijing 100083
Cite this article: 

WANG Jianzhong; QU Xuahui; YIN Haiqing; ZHOU Shengyu. High velocity compaction of ferrous powder. Chin J Mater Res, 2008, 22(6): 589-592.

Download:  PDF(741KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ferrous parts were prepared through high velocity compaction (HVC), the relationship between the impact energy, the impact velocity and the stroke length was investigated. The effects of impact energy and compaction methods on the green density, the maximal impact force, the withdraw force and the radial springback were discussed. The results showed that the impact energy was direct proportional to the stroke length and the impact velocity is parabolic to it. The green density increased with the impact energy increasing. In single impact the green density was 7.336 g/cm3, relative density about 97%, when impact energy was 6510 J. For the same total impact energy the green density of specimen processed by double impacts was the best and that of specimen fabricated by triplex impacts was the lowest. The withdraw force and the radial springback of specimen produced by HVC were all lower than that of specimen processed by traditional compaction.

Key words:  synthesizing and processing technics      PM      green density      high velocity compaction      impact energy      withdraw force     
Received:  08 January 2008     
ZTFLH: 

TB44

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2008/V22/I6/589

1 F.Richard, HVC punches PM to new mass production limits, Metal Powder Report, 57(9), 26(2002)
2 R.L.Orban, New research directions in powder metallurgy, Romanian Reports in Physics, 56(3), 505(2004)
3 CHI Yue, GUO Shiju, MENG Fei, YANG Xia, ZHANG Heng, LIAN Yudong, High velocity compaction in powder metallurgy, Powder Metallurgy Industry, 15(6), 41(2005)
(迟悦, 果世驹, 孟飞, 杨霞, 张恒, 连玉栋,粉末冶金高速压制成形技术, 粉末冶金工业, 15(6), 41(2005))
4 SHEN Yuanxun, XIAO Zhiyu, WEN Liping, PAN Guoru, LI Yuanyuan, Principle, characteristics and status of high velocity compaction in powder metallurgy, Powder Metallurgy Industry, 16(3), 19(2006)
(沈元勋, 肖志瑜, 温利平, 藩国如, 李元元, 粉末冶金高速压制技术的原理、特点及其研究进展, 粉末冶金工业, 16(3), 19(2006))
5 ZHOU Shengyu, YIN Haiqing, QU Xuanhui, Research status of high velocity compaction technology in powder metallurgy, Materials Review, 21(7), 79(2007)
(周晟宇, 尹海清, 曲选辉, 粉末冶金高速压制技术的研究进展, 材料导报, 21(7), 79(2007))
6 P.Skoglund, in 2001 International conference on Power Transmission Components, High density PM components by high velocity compaction, edited by A.Volker, Chu Chiulung, F.William, J.Jandeska, (Ypsilanti, Metal Powder Industries Federation, 2001)p.16 
7 P.Skoglund, High density PM parts by high velocity compaction, Powder Metallurgy, 44(3), 199(2001)
8 P.Skoglund, in Advance in Powder Metallurgy & Particulate Materials-2002, High-Density PM Components by High Velocity Compaction, edited by A.Volker, Chu Chiulung, F.William, J.Jandeska, (New Jersey, Metal Powder Industries Federation, 2002) p.1 
9 E.Caroline, H¨ogan¨as promotes potential of high velocity compaction, Metal Powder Report, 56(9), 6(2001)
10 F.Dore, L.Lazzarotto, S.Bourdin, High velocity compaction: overview of materials, applications and potential, Materials Science Forum, 534-536, 293(2007)
11 E.Torsten, L.Ppetri, Residual stresses in green bodies of steel powder after conventional and high speed compaction, Materials Science Forum, 407(404), 77(2002)
12 B.Barendvanden, F.Christer, L.Tomas, Industrial implementation of high velocity compaction for improved properties, Powder Metallurgy, 49(2), 107(2006)
13 P.Jons′en, H-A.H¨aggblad, L.Troive, J.Furuberg, S.Allroth, P.Skoglund, Green body behavior of high velocity pressed metal powder, Materials Science Forum, 534-536, 289(2007)
14 C.Aslund, in Euro PM 2004 Conference Proceedings, High velocity compaction (HVC) of stainless steel gas atomized powder, edited by D.Herbert, R.Raimund, (Shrewsbury UK, EPMA, 2004) p.533 
15 A.Bruska, S.Bengt, K.Leif, Development of a high-velocity compaction process for polymer powders, Polymer Testing, 24(4), 909(2005)
16 D.Jauffr`es, O.Lame, G.Vigier, F.Dor′e, Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction, Polymer, 48(21), 6374(2007)
17 HUANG Peiyun, Principles of Powder Metallurgy (Beijing, The press of Metallurgical Industry, 1997)p.170 
(黄培云, 粉末冶金原理, (北京, 冶金工业出版社, 1997) p.170)
18 WU Chengyi, ZHANG Liying, Mechanical principles of Powder Forming (Beijing, The press of Metallurgical Industry, 2003) p.6 
(吴成义, 张丽英, 粉末成形力学原理, (北京, 冶金工业出版社, 2003) p.6)

[1] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[2] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform[J]. 材料研究学报, 2022, 36(4): 250-260.
[3] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] CAI Guodong, CHENG Xiyun, WANG Dian. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] CHEN Chaoyang,CHEN Zhiyong,ZHU Shaoxiang,LIU Jianrong,WANG Qingjiang. Solution Temperature Sensitivity for Primary α-Phase Volume Fraction of Ti750 Alloys[J]. 材料研究学报, 2019, 33(10): 794-800.
[11] Bin QIN,Qun WANG,FuMeng WANG,LiE JIN,XiaoLing XIE,Qing CAO. Preparation of Needle Cokes with High Electrical Conductivity and Low Coefficient of Thermal Expansion[J]. 材料研究学报, 2019, 33(1): 53-58.
[12] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[13] Yanwei LI, Zhiping XIE, Canzheng LIU, Jinhuan YAO, Jiqiong JIANG, Jianwen YANG. Preparation and Lithium Storage Performance of Two Dimensional Fold-like V2O5 Nanomaterial[J]. 材料研究学报, 2017, 31(5): 374-380.
[14] Chengdong LI, Zhilei YAO, Ju LI, Jin XU, Xin XIONG. Preparation and Electrochemical Performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries[J]. 材料研究学报, 2017, 31(5): 394-400.
[15] Wei SUN, Fuchun LIU, Ganxin JIE, Wei KE, En-Hou HAN, Ju WANG, Haijun HUANG, Yu DU. Investigation on Anti-corrosion Mechanism of 8-hydro-xyquinoline Modified Nano-silica/epoxy Coatings[J]. 材料研究学报, 2017, 31(11): 818-826.
No Suggested Reading articles found!