Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (6): 401-409    DOI: 10.11901/1005.3093.2023.125
ARTICLES Current Issue | Archive | Adv Search |
Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite
BIAN Pengbo1,2, HAN Xiuzhu3, ZHANG Junfan1, ZHU Shize1(), XIAO Bolv1, MA Zongyi1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
3.Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
Cite this article: 

BIAN Pengbo, HAN Xiuzhu, ZHANG Junfan, ZHU Shize, XIAO Bolv, MA Zongyi. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite. Chinese Journal of Materials Research, 2024, 38(6): 401-409.

Download:  HTML  PDF(26584KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hot pressed Al-based composites of 15% SiC/2009A1 (volume fraction) were prepared by powder metallurgy method. The effect of the variation of Al powder sizes (13 μm, 32 μm) and temperatures (560oC, 580oC, 600oC) on their microstructure and mechanical property was studied using optical microscopy (OM), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and tensile tests. The results show that the composite prepared with small Al powders has higher strength and ductility than that prepared with large Al powders. The reason could be attributed to the following three aspects. First, large Al powders result in the uneven distribution of SiC particles in the matrix. Secondly, in the composites prepared with large Al powders, Cu and Mg spread unevenly and which then react with the extrinsic contaminants such as Fe and O, forming large-sized insoluble phases. Thirdly, in the composite prepared with large Al powders, the bonding between SiC particles and the aluminum matrix is weak, which is particularly obvious when the hot pressing temperature is low, resulting in debonding of SiC-Al interface during tensile tests. The fracture mechanism of the composites prepared with the two Al powders was analyzed. At all hot-pressing temperatures, the composites prepared with small Al powders are fractured due to the tearing of the Al-matrix and fracture of SiC partculates. However, for the composite prepared with large Al powders, SiC particles and aluminum matrix tend to debond when hot pressing at low temperature, while the interfacial bonding is improved with the increase of hot pressing temperature. When hot pressing at 580oC, the mechanical properties of the composites are the best, especially for that withsmall Al powders. Correspondingly, the tensile strength and yield strength reach 556 MPa and 381 MPa respectively, and the elongation reaches 9.2%.

Key words:  composite      mechanical property      powder metallurgy      aluminum powder size      hot pressing temperature     
Received:  14 February 2023     
ZTFLH:  TG146.2  
Fund: National Key R&D Program of China(2022YFB3707403);IMR Innovation Fund(2023-PY14)
Corresponding Authors:  ZHU Shize, Tel: (024)83971800, E-mail: szzhu16s@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.125     OR     https://www.cjmr.org/EN/Y2024/V38/I6/401

Fig.1  Morphologies of Al, Cu, Mg and SiC powders after mechanical mixingAl powder with D50 of 13 μm (a) and Al powder with D50 of 32 μm (b)
Fig.2  Metallographic diagrams of hot-pressed 15%SiC/2009Al composite prepared by aluminum powder with different sizes at different hot pressing temperatures (a) 13 μm/560oC, (b) 13 μm/580oC, (c) 13 μm/600oC, (d) 32 μm/560oC, (e) 32 μm/580oC, (f) 32 μm/600oC
Fig.3  Metallographic diagrams of 15%SiC/2009Al composites in T4 state prepared by aluminum powder with different sizes at different hot pressing temperatures (a) 13 μm/560oC, (b) 13 μm/580oC, (c) 13μm/600oC, (d) 32 μm/560oC, (e) 32 μm/580oC, (f) 32 μm/600oC
Fig.4  SEM images of 15%SiC/2009Al composites in T4 state prepared by aluminum powder with different particle sizes at different hot pressing temperatures (a) 13 μm/560oC, (b) 13 μm/580oC, (c) 13 μm/600oC, (d) 32 μm/560oC, (e)32 μm/580oC, (f) 32 μm/600oC
Fig.5  XRD patterns of 15%SiC/2009Al composites in T4 state prepared by aluminum powders with different sizes at different hot pressing temperat-ures (a) 13 μm/560oC, (b) 13 μm/580oC, (c) 13 μm/600oC, (d) 32 μm/560oC, (e) 32 μm/580oC, (f) 32 μm/600oC
Fig.6  Element distribution of 15%SiC/2009Al composites in the T4 state prepared by different aluminum powder sizes at a hot pressing temperature of 560oC (a) 13 μm and (b) 32 μm
Fig.7  Element distribution of 15%SiC/2009Al composite in T4 state prepared by aluminum powder with different sizes at hot pressing temperature of 600oC (a) 13 μm and (b) 32 μm
Aluminum powder size / μmHot pressing temperature / oCYield strength / MPa

Tensile

strength / MPa

Elongation / %Density / g·cm-3Relative density / %
13560391(6.9)562(5.3)8.72.82699.9
30~40560378(7.5)506(8.0)3.52.82199.7
13580381(0.8)556(1.9)9.22.82399.8
30~40580336(4.2)508(1.6)7.82.81599.5
13600374(2.9)542(2.8)8.22.82299.7
30~40600334(4.9)506(4.1)7.82.81099.3
Table 1  Properties of T4 15%SiC/2009Al composites prepared by aluminum powder with different sizes at different hot pressing temperatures
Fig.8  Fracture morphology of 15%SiC/2009Al composites prepared by aluminum powder with different sizes at different hot pressing temperatures (a) 13 μm/560oC, (b) 13 μm/580oC, (c) 13 μm/600oC, (d) 32 μm/560oC, (e) 32 μm/580oC, (f) 32 μm/600oC
Fig.9  Fracture surface of 15%SiC/2009Al composites prepared by large-sized aluminum powder at hot pressing temperature of 600oC (a) secondary electron image, (b) back scattering electron image, (c) composition analysis at the arrow in Fig.9b
1 Milind S M, Uddha M S. An investigation of mechanical properties of aluminium based silicon carbide (AlSiC) metal matrix composite by different manufacturing methods [J]. Mater. Today, 2021, 44: 376
2 Huang G Q, Wu J, Hou W T, et al. A novel two-step method to prepare fine-grained SiC/Al-Mg-Sc-Zr nanocomposite: Processing, microstructure and mechanical properties [J]. Mater. Sci. & Eng.: A, 2021, 823: 141764
3 Nam D H, Kim Y K, Cha S I, et al. Effect of CNTs on precipitation hardening behavior of CNT/Al-Cu composites [J]. Carbon, 2012, 50(13): 4809
4 Liu Z Y, Xiao B L, Wang W G, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing [J]. Carbon, 2012, 50(5): 1843
5 Styles M J, Hutchinson C R, Chen Y, et al. The coexistence of two S (Al2CuMg) phases in Al-Cu-Mg alloys [J]. Acta Mater., 2013, 60(20): 6940
6 Song M, Xiao D H. Modeling the fracture toughness and tensile ductility of SiCp/Al metal matrix composites [J]. Mater. Sci. & Eng.: A, 2008, 474(1-2): 371
7 Singh K K, Singh S, Shrivastava A K. Comparison of wear and friction behavior of aluminum matrix alloy (Al 7075) and silicon carbide based aluminum metal matrix composite under dry condition at different sliding distance [J]. Mater. Today, 2016, 4: 8960
8 Chen M Q, Bai Y L, Zhang Z F, et al. Research progress on preparation of SiC/Al for electronic packaging by liquid infiltration [J]. Mater. Sci. Forum, 2021, 1035: 906
9 Liu G F, Chen T J, Wang Z J. Effects of solid solution treatment on microstructure and mechanical properties of SiCp/2024 Al composite: A comparison with 2024 Al alloy [J]. Mater. Sci. & Eng.: A, 2021, 817: 141413
10 Lee J C, Shim J H, Lee H I, et al. Methodology to design the interfaces in SiC-Al composites [J]. Metall. Mater. Trans, 2001(A32): 1541
11 Xie J P, Wang H, Ang A Q, et al. Mechanical properties and microstructure of SiCp/2024Al composites prepared by vacuum hot pressing [J]. Trans. Mater. & Heat Treat., 2015, 36(1): 23
12 Karthik G M, Panikar S, Ram G, et al. Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles [J]. Mater. Sci. & Eng.: A, 2017, 679:193
13 Xiao L, Guo Q. Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites [J]. Mater. Sci. & Eng.: A, 2018, 711: 643
14 Wang Z G, Li C P, Wang H, et al. Aging behavior of Nano-SiC/2014Al composite fabricated by powder metallurgy and hot extrusion techniques [J]. J. Meter. Sci. & Technol., 2016, 32(10): 5
15 Arvind M, Kaushik M P, Mayur A, et al. Effect of mixing method and particle size on hardness and compressive strength of aluminum based metal matrix composite prepared through powder metallurgy route [J]. J. Mater. Res. & Technol., 2022, 18: 282
16 Jin P, Xiao B L, Wang Q Z, et al. Effect of hot extrusion on interfacial microstructure and tensile properties of SiCp/2009Al composites fabricated at different hot pressing temperatures [J]. J. Meter. Sci. & Technol., 2011, 27(6): 518
17 Liu Q, Qi F, Wang Q, et al. The influence of particles size and its distribution on the degree of stress concentration in particulate reinforced metal matrix composites [J]. Mater. Sci. & Eng.: A, 2018, 731: 351
18 Pal S, Mitra R, Bhanuprasad V V. Aging behaviour of Al-Cu-Mg alloy-SiC composites [J]. Mater. Sci. & Eng.: A, 2008, 480(1-2): 496
19 Ye T, Xu Y, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite [J]. Mater. Sci. & Eng.: A, 2019, 753: 146
20 Wei S H, Nie J H, Liu Y Q, et al. Effect of particle size on fracture toughness of 15%SiCp/2009Al composites [J]. Chin. J. Rare Metal., 2020, 44(2): 147
魏少华, 聂俊辉, 刘彦强 等. 颗粒尺寸对15%SiCp/2009Al复合材料断裂韧性的影响 [J]. 稀有金属., 2020, 44(2): 147
21 Bhanu P V, Ramakrishnan P. Clustering probability maps for private metal matrix composites [J]. Scr. Mater., 2000, 43: 835
22 Slipenyuk A, Kuprin V, Milman Y, et al. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio [J]. Acta Mater., 2006, 54: 157
23 Jin P, Xiao B L, Wang Q Z, et al. Effect of solution temperature on aging behavior and properties of SiCp/Al-Cu-Mg composites [J]. Mater. Sci. & Eng.: A, 2011, 528(3): 1504
24 Zhang Q, Wang Q Z, Xiao B L, et al. Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy [J]. Acta Metall. Sinica, 2012, 48(2): 135
张 琪, 王全兆, 肖伯律 等. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布 [J]. 金属学报. 2012, 48(2): 135
25 Jin P, Xiao B L, Wang Q Z, et al. Effect of hot pressing temperature on microstructure and mechanical properties of SiC particle reinforced aluminum matrix composites [J]. Acta Metall. Sinica, 2011, 47(3): 298
金 鹏, 肖伯律, 王全兆 等. 热压烧结温度对SiC颗粒增强铝基复合材料微观组织及力学性能的影响 [J]. 金属学报, 2011, 47(3): 298
26 Xing Y, Li N Y, Li C J, et al. Effects of size and oxidation treatment for SiC particles on the microstructures and mechanical properties of SiCp/Al composites prepared by powder metallurgy [J]. Mater. Sci. & Eng.: A, 2022, 851
27 Wang Z, Min S, Chao S, et al. Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al-Cu alloy composites [J]. Mater. Sci. & Eng.: A, 2010, 527(24-25): 6537
[1] LIU Ying, CHEN Ping, ZHOU Xue, SUN Xiaojie, WANG Ruiqi. Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites[J]. 材料研究学报, 2024, 38(6): 453-462.
[2] XU Dongwei, ZHANG Mingju, SHEN Zhihao, XIA Chenlu, XU Jingman, GUO Xiaoqin, XIONG Xuhai, CHEN Ping. Microwave Absorption Performance of Encapsulated Magnetic Particles With Nitrogen-Doped Carbon Nanotubes Fe3O4@NCNTs[J]. 材料研究学报, 2024, 38(6): 430-436.
[3] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[4] MA Fei, WANG Chuang, GUO Wuming, SHI Xiangdong, SUN Jianying, PANG Gang. Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings[J]. 材料研究学报, 2024, 38(4): 297-307.
[5] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[6] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[7] LI Zhaoyang, XUE Yi, YANG Zehao, ZHAO Qingzhi, PENG Yanshuang, LIU Yong, YANG Jianping, ZHANG Hui. Performance of Interlayer Toughened Carbon Fiber/Epoxy Composites of Polyethersulfone Porous Fiber Veil[J]. 材料研究学报, 2024, 38(1): 33-42.
[8] MA Yuan, WANG Han, NI Zhongqiang, ZHANG Jiangang, ZHANG Ruonan, SUN Xinyang, LI Chusen, LIU Chang, ZENG You. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2024, 38(1): 61-70.
[9] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[10] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[11] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[12] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[13] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[14] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[15] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
No Suggested Reading articles found!