Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (5): 390-400    DOI: 10.11901/1005.3093.2023.516
ARTICLES Current Issue | Archive | Adv Search |
High-temperature Mechanical Properties and Strengthening Mechanism of New Secondary Hardened Steel 25CrMo3NiTiVNbZr
LI Ruohao1, HU Xiaoyu2, WANG Zhongcheng3, LI Hao4, YANG Yong4, XU Le1(), LIANG Enpu1, HE Xiaofei1
1.Research Institite of Special Steels, Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
2.The Chinese Society for Metals, Beijing 100010, China
3.Inner Mongolia North Heavy Industries Group, Baotou 014010, China
4.Chongqing Changan Wangjiang Industry Group Co., Ltd., Chongqing 400020, China
Cite this article: 

LI Ruohao, HU Xiaoyu, WANG Zhongcheng, LI Hao, YANG Yong, XU Le, LIANG Enpu, HE Xiaofei. High-temperature Mechanical Properties and Strengthening Mechanism of New Secondary Hardened Steel 25CrMo3NiTiVNbZr. Chinese Journal of Materials Research, 2024, 38(5): 390-400.

Download:  HTML  PDF(19676KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel secondary hardened steel 25CrMo3NiTiVNbZr was developed via optimization the chemical composition of the 25Cr3Mo3NiNbZr steel bymeans of the so called JMatpro and Thermo-Calc software. Then the microstructure, phase composition, morphology of precipitates and mechanical performance at 700℃ of the 25CrMo3NiTiVNbZr steel were characterized by means of transmission electron microscopy (TEM), electron backscattering diffraction (EBSD), while its the high-temperature streng-thening mechanism was also elucidated. The results show that the tensile strength and yield strength of 25CrMo3NiTiVNbZr steel at 700oC are 543 MPa and 409 MPa, respectively, which are 139 MPa and 123 MPa higher than that of 25Cr3Mo3NiNbZr steel. The high-temperature strengthening of the 25CrMo3NiTiVNbZr steel may mainly ascribed to themechanism, precipitation strengthening. In the process of being stretched at 700oC, the precipitation strengthening increment derived from the precipitation of the strengthening phase for the 25CrMo3NiTiVNbZr steel reached 367 MPa, which was 147 MPa higher than that of the 25Cr3Mo3NiNbZr steel. This is mainly due to the higher thermal stability and smaller size (average size at 7.93 nm) of the precipitated strengthening phases in the 25CrMo3NiTiVNbZr steel. After high-temperature stretching, the average size of precipitates remained at 8.14 nm.

Key words:  metallic materials      high temperature mechanics      ingredient optimization      strengthening mechanism      nanoprecipitated phase     
Received:  19 October 2023     
ZTFLH:  TG142  
Fund: Demonstration Platform for Production and Application of Agricultural Machinery Equipment and Materials(TC200H01X/05)
Corresponding Authors:  XU Le, Tel: 18911259273, E-mail: xule@nercast.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.516     OR     https://www.cjmr.org/EN/Y2024/V38/I5/390

SteelCCrMoNiNbTiVZrFe
P00.283.03.00.80.13--0.02Bal.
P10.281.03.00.80.130.080.50.02Bal.
Table 1  Chemical composition of test steel (mass fraction, %)
Fig.1  High-temperature tensile specimen
Fig.2  Effect of Ti on the equilibrium precipitation phase (a) 0%Ti, (b) 0.05%Ti, (c)0.1%Ti, (d) 0.15%Ti, (e) 0.2%Ti (f) 0.25%Ti
Fig.3  Effect of Mo on the equilibrium precipitation phase (a) 1.0%Mo, (b) 1.5%Mo, (c)2.0%Mo, (d) 2.5%Mo, (e) 3.0%Mo, (f) 3.5%Mo
Fig.4  Effect of V on the equilibrium precipitation phase (a) 0.1% V, (b) 0.2% V, (c) 0.3% V, (d) 0.4%V, (e) 0.5%V, (f) 0.6%V
Fig.5  Effect of Cr on the equilibrium precipitation phase (a) 3.0%Cr, (b) 2.5%Cr, (c) 2.0%Cr, (d) 1.5%Cr, (e) 1.0%Cr, (f) 0.5%Cr
Fig.6  P0 and P1 steel balance phase diagram (a) P0 steel, (b) P1 steel
Fig.7  700oC high temperature performance of P0 and P1 steel (a) strength, (b) elongation
Fig.8  Carbide size before and after deformation at 700oC (a, c) P0 steel before and after deformation at 700oC, (b, d) P1 steel before and after deformation at 700oC
Fig.9  Carbides size before and after deformation at 700oC of P0 steel (a, b) and P1 steel (c, d)
The mass fraction of the elements in the M3C / %
FeCrMoNiVC*Σ
P0 steelBefore0.3930.2010.2370.006-0.0540.891
After0.2080.1450.1580.0046-0.0330.549
P1 steelBefore0.2070.0460.1410.00760.0150.0260.443
After0.07840.0190.05770.00450.00740.01040.177
  Tbale 2M3C phase precipitation before and after deformation at 700oC
The mass fraction of the elements in the MC + M2C / %
FeCrMoNbTiVZrΣ
P0 steelBefore0.0980.4581.9410.109--0.022.606
After0.1120.5172.070.109--0.022.805
P1 steelBefore0.0650.1031.7820.130.080.4160.0182.594
After0.0520.1251.9190.1280.080.4010.0182.723
Table 3  MC and M2C phase precipitation before and after deformation at 700oC
SteelAverage size before 700oC/nmAverage size after 700oC/nm
P018.0020.47
P17.938.14
Table 4  Average size of precipitated phase before and after deformation at 700oC
Fig.10  EDS of P0 steel carbide
Fig.11  EDS of P1 steel carbide
Fig.12  EBSD map overlapped with outlined prior austemite grain boundaries (a) P0 steel, (b) P1 steel, and (c) the distributions of prior austenite grain size
Fig.13  Strengthening contributions at 700oC for P0 and P1 steel (a) the calculated contribution by different factors to yield strength; (b) theoretical and experimental values
1 Wang M Q, Dong H, Hui W J, et al. Effect of heat treatment on microstructure and mechanical properties of Cr-Ni-Mo-Nb steel[J]. Mater. Sci. Technol., 2007, 23(8): 963
2 Zhang Z, Zhang J, Yao Z, et al. Design for Novel Hot-Work Die Steel by Thermodynamic Calculation and Microstructural Examination[J]. Metals., 2019, 9(7): 805
3 Zhao L. A study on the strengthen reason of certain big gun tube material[D]. Naijing: Nanjing University of Science & Technology, 2008
赵 隆. 某炮钢材料的强化机理研究[D]. 南京: 南京理工大学, 2008
4 Ma X. Study on mechanical and wear resistance of 25Cr3Mo3NiNbZr steel[D]. Beijing: Central Iron & Steel Research Institute, 2019
马 潇. 25Cr3Mo3NiNbZr钢的力学与磨损性能研究[D]. 北京: 钢铁研究总院, 2019
5 Li Z D, Zheng L G. Evolution of secondary phase in G18CrMo2-6 steel during high temperature tempering[J]. Chin. J. Mater. R., 2016, 30(8): 561
李振江, 郑雷刚. G18CrMo2-6钢在高温回火过程中第二相的演变[J]. 材料研究学报, 2016, 30(8): 561
doi: 10.11901/1005.3093.2015.640
6 Gu J, Li J, Yanagimoto J, et al. Microstructural evolution and mechanical property changes of a new nitrogen-alloyed Cr-Mo-V hot-working die steel during tempering[J]. Mater. Sci. Eng., 2021(804): 140721
7 Wu D, Wang F, Cheng J, et al. Effects of Nb and tempering time on carbide precipitation behavior and mechanical properties of Cr-Mo-V steel for brake discs[J]. Steel. Res. Int., 2018, 89(5): 1700491
8 Wen T, Hu X, Song Y, et al. Carbides and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel with different V contents[J]. Mater. Sci. Eng., 2013, 588(20): 201
9 Wang X L. Study on the microstructure and mechanical properties of high strength martensitic steel of 1350 MPa grade[D]. Kunming: Kunming University of Science and Technolgy, 2018
王小龙. 1350 MPa级高强度马氏体钢组织与力学性能的研究[D]. 昆明: 昆明理工大学, 2018
10 Wan R, Sun F, Zhang L, et al. Development and study of high-strength low-Mo fire-resistant steel[J]. Mater. Des., 2012, 36: 227
11 Zhang Z, Zhang J, Lian Y, et al. Effects of vanadium content on the carbides transformation and strengthening mechanism of MPS-700V hot-work die steel at room and elevated temperatures[J]. Mater. Sci. Eng., 2021, 813: 141091
12 Chen J, Jia Z, Wang J, et al. Newly developed high-strength martensitic stainless steel for the snipe rifle barrel with high shooting accuracy[J]. J. Mater. R. Technol., 2023, 24: 3956
13 Liu Q C, Yong Q L, Zheng Z W. Effect of vanadium on microstructure and high temperature properties of fire-resistant steels[J]. Iron Steel, 2016, 51(7): 76
刘庆春, 雍岐龙, 郑之旺. 钒对耐火钢显微组织及高温性能的影响[J]. 钢铁, 2016, 51(7): 76
14 Onizawa T, Wakai T, Ando M, et al. Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel[J]. Nucl. Eng. Des., 2008, 238(2): 408
15 Yang G, Sun X, Li Z, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel[J]. Mater. Des., 2013, 50: 102
16 Wang Y L. Regulation of microstructure and properties and damage mechanism study for 4Cr5MoSiV1(Ti)[D]. Luoyang: Henan Univesity of Science and Technology, 2021
王要利. 4Cr5MoSiV1(Ti)组织性能调控及损伤机理研究[D]. 洛阳: 河南科技大学, 2021
17 Xie Y X, Cheng X N, Ju Y L, et al. Research progress on carbide precipitation and evolution for H13 and H13-modifies hot working die steels during different heat treatment schedules[J]. Mater. Rep., 2023, 37(23): 177
谢奕心, 程晓农, 鞠玉琳 等. H13及改进型热作模具钢热处理过程中碳化物析出演化行为研究进展[J]. 材料导报: 2023, 37(23): 177
18 Ding H, Liu T, Wei J, et al. Microstructure and tempering softening mechanism of modified H13 steel with the addition of Tungsten, Molybdenum, and lowering of Chromium[J]. Mater. Design., 2022, 224: 111317
19 Wang Q, Zhang C, Li R, et al. Characterization of the microstructures and mechanical properties of 25CrMo48V martensitic steel tempered at different times[J]. Mater. Sci. Eng., 2013, 559: 130
20 Chen J, Liu H, Pan Z, et al. Carbide evolution and service life of simulated post weld heat treated 2.25 Cr-1Mo steel[J]. Mater. Sci. Eng., 2015, 622: 153
21 Abderrahim F Z, Faraoun H I. Structure Ouahrani T bonding and stability of semi-carbides M2C and sub-carbides M4C (M = V, Cr, Nb, Mo, Ta, W): A first principles investigation[J]. Physica B., 2012, 407(18): 3833
22 Yong Q L. The Second Phase in Steel[M]. Beijing: Metallurgical Industry Press, 2006: 1
雍岐龙. 铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 1
23 Liang J W, Shen Y F, Misra R D K, et al. High strength-superplasticity combination of ultrafine-grained ferritic steel: The significant role of nanoscale carbides[J]. J. Mater. Sci. Technol., 2021, 83: 131
doi: 10.1016/j.jmst.2020.11.078
24 Takaki S, Akama D, Nakada N, et al. Effect of grain boundary segregation of interstitial elements on Hall-Petch coefficient in steels[J]. Mater. Trans., 2014, 55: 28
25 Ma H X, Li Y G. Measurement of size distribution and volume fraction of precipitates in silicon steel[J]. J. Mater. Sci. Eng., 2002(03): 328
马红旭, 李友国. 硅钢中析出物的尺寸分布以及体积分数的测定[J]. 材料科学与工程, 2002(03): 328
26 Fu J, Li G, Mao X, et al. Nanoscale cementite precipitates and comprehensive strengthening mechanism of steel[J]. Metall. Mater. Trans., 2011, 42: 3797
27 Gladman T. Precipitation hardening in metals[J]. Materi. Sci. Technol., 1999, 15(1): 30
28 Ding H, Yuan Z Z, Liu T, et al. Microstructure and high-temperature tensile behavior of modified H13 steel with the addition of tungsten, molybdenum, and lowering of chromium[J]. Mater. Sci. Eng., 2023, 866: 144655
[1] WU Yingming, JIANG Keda, LIU Shengdan, FAN Shitong, QIN Qiuhui, LI Jun. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ[J]. 材料研究学报, 2024, 38(5): 337-346.
[2] WANG Qiang, ZHU Heyu, LIU Zhibo, ZHU Yi, LIU Peitao, REN Wencai. Electron Microscopy Study of Stacking Defects in β-In2Se3[J]. 材料研究学报, 2024, 38(5): 330-336.
[3] LIU Jiaxiao, HU Xiao, DING Hua. Effect of Aging Treatment on Microstructure Evolution and Mechanical Properties of Fe-12Mn-8Al-1C-3Cu Lightweight Steel[J]. 材料研究学报, 2024, 38(5): 356-364.
[4] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[5] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[6] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[7] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[8] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[9] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[10] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[11] WU Houran, DUAN Tigang, MA Li, SHAO Gangqin, ZHANG Hengyu, ZHANG Haibing. Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries[J]. 材料研究学报, 2024, 38(4): 257-268.
[12] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[13] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[14] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
[15] YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. 材料研究学报, 2024, 38(3): 232-240.
No Suggested Reading articles found!