Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (9): 679-686    DOI: 10.11901/1005.3093.2021.172
ARTICLES Current Issue | Archive | Adv Search |
Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide
YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji()
State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Cite this article: 

YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide. Chinese Journal of Materials Research, 2022, 36(9): 679-686.

Download:  HTML  PDF(9252KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The recrystallized SiC was prepared via argon atmosphere sintering with SiC of different particle sizes as raw material and submicron Al2O3 as additives, and its phase composition, microstructure, pore size distribution and compression resistance were characterized by means of universal testing machine, X-ray diffractometer, plasma spectrometer, scanning electron microscope and mercury porosimeter. The results show that due to the presence of submicron Al2O3, the sintering process of the recrystallized SiC can be differentiated into two stages: liquid phase sintering and recrystallization sintering. The highly active sub-micron Al2O3 promotes the formation of liquid phase during liquid phase sintering stage, therewith, the mass transfer mode of SiC changed from diffusion to viscous flow. During recrystallization sintering stage, the mass transfer of SiC at high temperature is dominated by evaporation and condensation, forming Al-containing gas phase and solid solution with SiC, which promotes the crystallographic transformation of the recrystallized SiC, i.e., from 6H-SiC to 4H-SiC. After introducing submicron Al2O3, the pore size distribution of recrystallized SiC material changes from unimodal to multimodal, of which, the characteristic peak of small size pores correspond to the course of recrystallization and sintering, whereas, the characteristic peak of large pore size presents the course of liquid phase sintering. At the same time, the SiC grains grow and develop much perfectly with the prolonging of holding time, correspondingly, the SiC grains change from irregular granular to more regular hexagonal structure. However, the decrease of bulk density, the inhomogeneity of SiC grain size and the multi-peak distribution of pore size, so that decrease the compressive strength of the SiC product.

Key words:  inorganic nonmetallic materials      silicon carbide      recrystallization      submicron Al2O3      sintering mechanism     
Received:  08 March 2021     
ZTFLH:  TQ174.75  
Fund: Natural Science Foundation of Hubei Province(2020CFB692);National Natural Science Foundation of China Joint Fund Project(U20A20239);National Defense Pre-research Fund Project of Wuhan University of Science and Technology(GF201913)
About author:  DENG Chengji, Tel: 13507142506, E-mail: cjdeng@wust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.172     OR     https://www.cjmr.org/EN/Y2022/V36/I9/679

SamplesSiC 0.5/μmSiC 20/μmAl2O3Holding time/h
RS0.52080-0.5
RS12080-1
ARS0.520800.50.5
ARS120800.51
Table 1  Batch compositions of starting materials
Fig.1  Heating curves of samples
Fig.2  XRD patterns of the samples after heat treatment at 2200℃ (a) RS0.5, (b) RS1, (c) ARS0.5 and (d) ARS1
SampleSiCMetallic SiMetallic AlC
ARS199.040.110.020.07
Table 2  Chemical composition of the sample ARS1 (mass fraction, %)
Fig.3  SEM micrographs of fracture surface of the sample treated at 2200℃ for 0.5 h (a, b) RS0.5; (c, d) ARS0.5
Fig.4  SEM micrographs of the sample fracture surface treated at 2200℃ for 1 h (a, b) RS1, (c, d) ARS1
Fig.5  Binary phase diagram of Al2O3-SiO2
Fig.6  Phase changes in the sample at 2200℃ for different values of α
Fig.7  Crystal structures of SiC (a) 4H-SiC and (b) 6H-SiC
Fig.8  Pore size distribution and cumulative distribution of the samples heat-treated at 2200℃ (a) RS0.5 and RS1, (b) ARS0.5 and ARS1
SampleApparent porosity/%

Bulk density

/g·cm-3

Compressive strength/MPa
RS0.546.41±1.631.67±0.0211.60±0.35
RS148.09±1.841.58±0.0310.64±0.21
ARS0.548.68±2.011.43±0.037.45±0.25
ARS150.81±1.921.51±0.049.09±0.32
Table 3  Physical properties of samples heat-treated at 2200℃
1 Guo W M. Sintering mechanism and performance improvements of recrystallized silicon carbide [D]. Changsha: Hunan University, 2012
郭文明. 再结晶碳化硅烧结机理及其材料性能改进研究 [D]. 长沙: 湖南大学, 2012
2 Li Q S, Zhang Y J, Gong H Y, et al. Effects of AlN on the densification and mechanical properties of pressureless-sintered SiC ceramics [J]. Prog. Nat. Sci.: Mater. Int., 2016, 26: 90
doi: 10.1016/j.pnsc.2016.01.012
3 Zhou X N, Zhang J F, Huang X, et al. Mechanical properties of porous recrystallized SiC ceramics with taliored neck between SiC grains [J]. J. Chin. Ceram. Soc., 2019, 47: 1208
周小楠, 张建飞, 黄 鑫 等. 多孔重结晶碳化硅陶瓷的烧结颈结构调控与力学性能 [J]. 硅酸盐学报, 2019, 47: 1208
4 Yu C, Wu Z M, Ding J, et al. Effect of Al4SiC4 additive on the fabrication and characterization of recrystallized SiC honeycomb ceramics [J]. Ceram. Int., 2019, 45: 16612
doi: 10.1016/j.ceramint.2019.05.201
5 Zhang Q L, To S, Zhao Q L, et al. Recrystallization of amorphized Si during micro-grinding of RB-SiC/Si composites [J]. Mater. Lett., 2016, 172: 48
doi: 10.1016/j.matlet.2016.02.027
6 Bao Y W, Wang Y M, Jin Z Z. Creep and stress ageing of Al2O3/SiC multiphase ceramics at high temperature [J]. J. Chin. Ceram. Soc., 2000, 28: 348
包亦望, 王毅敏, 金宗哲. Al2O3/SiC复相陶瓷的高温蠕变与持久强度 [J]. 硅酸盐学报, 2000, 28: 348
7 Dai H L, Wang S Q, Zha C J, et al. Study on preparation recrystallization SiC powder by carbon thermal reduction method [J]. J. Ceram., 2002, 23: 192
戴红莲, 王思清, 查从济 等. 碳热还原法制备重结晶SiC粉末的研究 [J]. 陶瓷学报, 2002, 23: 192
8 Zhang Y C, Zhou L J, Wu B H, et al. Study on effect of Al2O3/Y2O3 sintering compositive on the sintering properties of SiC honeycomb ceramics [J]. J. Synth. Cryst., 2015, 44: 1330
张泳昌, 周立娟, 吴炳辉 等. Al2O3/Y2O3复合助剂对碳化硅蜂窝陶瓷烧结性能的影响研究 [J]. 人工晶体学报, 2015, 44: 1330
9 Zhang Y L, Hu M, Song X G, et al. Effect of sintering additive content on oxidation-resistance behavior of liquid sintered SiC ceramics [J]. Ordn. Mater. Sci. Eng., 2011, 34(1): 47
张云龙, 胡 明, 宋晓刚 等. 烧结助剂含量对液相烧结SiC陶瓷抗氧化性的影响 [J]. 兵器材料科学与工程, 2011, 34(1): 47
10 Hong D B, Yin Z B, Yan S Y, et al. Fine grained Al2O3/SiC composite ceramic tool material prepared by two-step microwave sintering [J]. Ceram. Int., 2019, 45: 11826
doi: 10.1016/j.ceramint.2019.03.061
11 Yin Y, Ma B Y, Hu C B, et al. Preparation and properties of porous SiC-Al2O3 ceramics using coal ash [J]. Int. J. Appl. Ceram. Technol., 2019, 16: 23
doi: 10.1111/ijac.13080
12 Yu C, Yuan W J, Zhu H X, et al. Synthesis of Al2O3-SiC composite by carbothermal reuction of calcined bauxite, silica and carbon black [J]. Rare Metal Mat. Eng., 2013, 42(Z1): 634
余 超, 员文杰, 祝洪喜 等. 矾土、氧化硅和炭黑碳热还原制备Al2O3-SiC复相陶瓷粉体 [J]. 稀有金属材料与工程, 2013, 42(Z1): 634
13 Ma B Y, Zhu Q, Sun Y, et al. Synthesis of Al2O3-SiC composite and its effect on the properties of low-carbon MgO-C refractories [J]. J. Mater. Sci. Technol., 2010, 26: 715
doi: 10.1016/S1005-0302(10)60112-0
14 Wang Q, Min X, Fang M H, et al. Effect of Al2O3-SiC composite powders additives on properties of taphole clay [J]. Bull. Chin. Ceram. Soc., 2018, 37: 2210
王 淇, 闵 鑫, 房明浩 等. 添加Al2O3-SiC复相粉体对高炉用炮泥性能的影响研究 [J]. 硅酸盐通报, 2018, 37: 2210
15 Xu S J, Zhou J G, Yang B, et al. Effect of deposition temperature on the properties of pyrolytic SiC [J]. J. Nucl. Mater., 1995, 224: 12
doi: 10.1016/0022-3115(95)00039-9
16 Liang Y H. Study on the molding and sintering processes of recrystallized SiC porous ceramic [D]. Beijing: Beijing Institute of Technology, 2015
梁宇恒. 重结晶SiC多孔陶瓷成型及烧结工艺研究 [D]. 北京: 北京理工大学, 2015
17 Lei H B. Research on oxidation resistance and thermal shock resistance of recrystallized silicon carbide ceramics [D]. Changsha: Hunan University, 2010
雷海波. 再结晶碳化硅陶瓷抗氧化及抗热震性能研究 [D]. 长沙: 湖南大学, 2010
18 Li N, Gu H Z, Zhao H Z. Refractory Material Science [M]. Beijing: Metallurgical Industry Press, 2010: 130
李 楠, 顾华志, 赵惠忠. 耐火材料学 [M]. 北京: 冶金工业出版社, 2010: 130
19 Liang H Q, Yao X M, Huang Z R, et al. The forming process of liquid phase during liquid phase sintering of SiC ceramic [J]. Mater. Mech. Eng., 2015, 39(2): 34
梁汉琴, 姚秀敏, 黄政仁 等. 碳化硅陶瓷液相烧结时的液相生成过程 [J]. 机械工程材料, 2015, 39(2): 34
20 Zhu H X, Deng C J, Bai C, et al. Preparation and application of fired Al2O3-SiC brick with tiny pore and high strength for torpedo [J]. Refractories, 2008, 42: 127
祝洪喜, 邓承继, 白 晨 等. 鱼雷罐用微气孔高强度Al2O3-SiC砖的研制与应用 [J]. 耐火材料, 2008, 42: 127
21 Li Y, Li J T, Chen C X, et al. Facile thermal explosion synthesis and optical properties of Al-doped flatted 3C-SiC microcrystals with 4H-SiC quantum interlayers [J]. Appl. Surf. Sci., 2012, 259: 21
doi: 10.1016/j.apsusc.2012.05.133
22 Kuang J L, Cao W B. Stacking faults induced high dielectric permittivity of SiC wires [J]. Appl. Phys. Lett., 2013, 103: 112906
doi: 10.1063/1.4821036
23 Wang K, Zhang Z M, Yu T, et al. The transfer behavior in centrifugal casting of SiCp/Al composites [J]. J. Mater. Process. Technol., 2017, 242: 60
doi: 10.1016/j.jmatprotec.2016.11.019
24 Li Z M, Zhou W C, Su X L, et al. Preparation and characterization of aluminum-doped silicon carbide by combustion synthesis [J]. J. Am. Ceram. Soc., 2008, 91: 2607
doi: 10.1111/j.1551-2916.2008.02526.x
25 Yu C, Cheng K R, Ding J, et al. Synthesis and characterization of Al4O4C nanorod/CNT composites [J]. Ceram. Int., 2017, 43: 11415
doi: 10.1016/j.ceramint.2017.05.352
26 Kuang J L, Jiang P, Ran F Y, et al. Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers [J]. J. Alloys Compd., 2016, 687: 227
doi: 10.1016/j.jallcom.2016.06.168
27 Xing G C, Deng C J, Ding J, et al. Fabrication and characterization of AlN-SiC porous composite ceramics by nitridation of Al4SiC4 [J]. Ceram. Int., 2020, 46: 4959
doi: 10.1016/j.ceramint.2019.10.234
28 Zhou W, Cai Z H, Zeng J, et al. Effects of sintering additives on the liquid-phase sintering of SiC [J]. J. Xiamen Univ. (Nat. Sci.), 2006, 45: 530
周 伟, 蔡智慧, 曾 军 等. 烧结助剂对SiC液相烧结行为的影响 [J]. 厦门大学学报(自然科学版), 2006, 45: 530
29 Rice R W. Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations [J]. J. Mater. Sci., 1993, 28: 2187
doi: 10.1007/BF00367582
[1] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[2] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[3] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[4] YU Sen, CHEN Leli, LUO Rui, YUAN Zhizhong, WANG Shuang, GAO Pei, CHENG Xiaonong. Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy[J]. 材料研究学报, 2023, 37(3): 211-218.
[5] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[6] LUO Hanyu, CAO Jianchun, ZENG Min, HAO Tianci, GAO Peng, WANG Juncai, ZHANG Fanling. Effect of Zr on Deformed Austenite Recrystallization and Precipitates in Ti-Microalloyed Low Carbon Steel[J]. 材料研究学报, 2022, 36(2): 123-132.
[7] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[8] CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu, HUANG Zhenyi. High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel[J]. 材料研究学报, 2022, 36(12): 907-918.
[9] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[10] LIU Yang, KANG Rui, FENG Xiaohui, LUO Tianjiao, LI Yingju, FENG Jianguang, CAO Tianhui, HUANG Qiuyan, YANG Yuansheng. Microstructure and Mechanical Properties of Extruded Mg-Alloy Mg-Al-Ca-Mn-Zn[J]. 材料研究学报, 2022, 36(1): 13-20.
[11] LIU Chao, WANG Xin, MEN Yue, ZHANG Haoyu, ZHANG Siqian, ZHOU Ge, CHEN Lijia, LIU Haijian. Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression[J]. 材料研究学报, 2021, 35(8): 583-590.
[12] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[13] PAN Xiaoyu, YANG Yinhui, NI Ke, CAO Jianchun, QIAN Hao. Microstructure and Recrystallization Behavior of 18.5%Cr High-Mn Low-Ni Type Duplex Stainless Steel during Hot Compression with Large Deformation[J]. 材料研究学报, 2021, 35(5): 381-393.
[14] SUN He, CHEN Ming, CHENG Ming, WANG Ruixue, WANG Xu, HU Xiaodong, ZHAO Hongyang, JU Dongying. A Multi-scale Model for Elucidation of Recrystallization and Texture of Mg-Alloy Sheet by Warm-rolling Process[J]. 材料研究学报, 2021, 35(5): 339-348.
[15] YANG Jingcheng, WANG Lizhong, ZHONG Zhiping, ZHENG Yingjun. Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization[J]. 材料研究学报, 2021, 35(4): 284-292.
No Suggested Reading articles found!