Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (12): 889-894    DOI: 10.11901/1005.3093.2015.12.889
Orginal Article Current Issue | Archive | Adv Search |
Constitutive Behavior of Bimodal Nanocrystalline Materials
Yingguang LIU(),Rongyuan JU,Huijun LI,Guangyi ZHAO
School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
Cite this article: 

Yingguang LIU,Rongyuan JU,Huijun LI,Guangyi ZHAO. Constitutive Behavior of Bimodal Nanocrystalline Materials. Chinese Journal of Materials Research, 2015, 29(12): 889-894.

Download:  HTML  PDF(1610KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bimodal nanocrystalline (BNC) materials composed of coarse grains (CG) and nanocrystalline grains (NG), have both high strength and good ductility. In this paper, a new constitutive model was proposed by using Taylor strength theory and the Johnson-Cook modelto analyze the effect of grain size and nano-cracks on the constitutive/failure behavior of BNC materials. Numerical calculations have been carried out according to the model. It was found that the prediction result is in good agreement with experimental data. It can be concluded from the calculations that in BNC materials, (1) NC matrix can provide high strength, whereas CG can induce strain hardening to enhance its ductility, (2) the existence of nano-cracks does not lead to materials failure but a positive effect on strain hardening.

Key words:  metal materials      constitutive behavior      bimodal nanocrystalline materials      Taylor strength theory      Johnson-Cook model     
Received:  12 May 2015     
Fund: *Supported by National Natural Science Foundation of China No.51301069, National Natural Science Foundation of Hebei Province No.E2014502073 and Fundamental Research Funds for the Central Universities No.2014MS114

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.12.889     OR     https://www.cjmr.org/EN/Y2015/V29/I12/889

Fig.1  Schematics of bimodal grain size distributions
Fig.2  Schematics of nano-cracks in bimodal structure
Fig.3  Dependence of critical crack intensity factorKICon the angle θ made by the boundary plane and crack growth direction
Fig.4  Maximum number N*of dislocations that can be emitted from the crack tip along one slip plane as a function of grain sized
α bCu/nm bAg/nm μCu/GPa μAg/GPa k20 n ρ0/m-2 ε˙0 M ψ γs(J?m-2) a0
0.2-0.5 0.256 0.29 48 30 18.5 12.5 0.5 1 s-1 1.732 0.2 1.58 dG2
Table 1  Symbol and value of parameters in the model
Fig.5  Calculated stress-strain relations for BNC Cu-Ag materials with different nanocrystalline matrix grain size
Fig.6  Calculated stress-strain relations for BNC Cu-Ag materials with different CG contents
Fig.7  Influence of the back stress on the plastic deformation of BNC Cu-Ag materials
Fig.8  X-ray diffraction (XRD) spectra of the sample synthesized using high temperature and high pressure method
Fig.9  Scanning electron microscopy (SEM) image of the BNC Cu-Ag materials
Fig.10  Comparison of the stress-strain relationship between the theoretical result and the experiment for BNC Cu-Ag materials
1 M. A. Meyers, A. Mishra, D. J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater Sci., 51, 427(2006)
2 C. C. Koch, D. G. Morris, K. Lu, A. Lnoue, Ductility of nanostructured materials, MRS Bull., 24, 54(1999)
3 G. He, J. Eckert, W. Loser, L. Schultz, Novel Ti-base nanostructure-dendrite composite with enhanced plasticity, Nat. Mater., 2, 33(2002)
4 M. Dao, L. Lu, R. J. Asaro, J. T. M. D. Hosson, E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater., 55, 4041(2007)
5 Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature, 419, 912(2002)
6 X. X. Shen, J. S. Lian, Z. H. Jiang, Q. Jiang, High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution, Mater. Sci. Eng., A, 487, 410(2008)
7 G. J. Fan, H. Choo, P. K. Liaw, E. J. Lavernia, Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution, Acta Mater., 54, 1759(2006)
8 B. Q. Han, E. J. Lavernia, F. A. Mohamed, Mechanical properties of nanostructured materials, Rev Adv Mater Sci, 9, 1(2005)
9 B. Q. Han, J. Y. Huang, Y. T. Zhu, E. J. Lavernia, Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys, Acta Mater., 54, 3015(2006)
10 B. Q. Han, E. J. Lavernia, Z. Lee, S. Nutt, D. Witkin, Deformation behavior of bimodal nanostructured 5083 Al alloys, Metall. Mater. Trans. A, 36, 957(2005)
11 I. A. Ovid’ko, A. G. Sheinerman, Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials, Acta Mater., 58, 5286(2010)
12 L. L. Zhu, S. Q. Shi, K. Lu, J. Lu, A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution, Acta Mater., 60, 5762(2012)
13 L. L. Zhu, J. Lu, Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution, Int. J. Plast., 30, 166(2012)
14 Y. G. Liu, J. Q. Zhou, D. Hui, A strain-gradient plasticity theory of bimodal nanocrystalline materials with composite structure, Composites Part B, 43, 249(2012)
15 V. L. Tellkamp, A. Melmed, E. J. Lavernia, Mechanical Behavior and Microstructure of a Thermally Stable Bulk Nanostructured Al Alloy, Metall. Mater. Trans. A, 32, 2335(2001)
16 S. Billard, J. P. Fondere, B. Bacroix, G. F. Dirras, Macroscopic and microscopic aspects of the deformation and fracture mechanisms of ultrafine-grained aluminum processed by hot isostatic pressing, Acta Mater., 54, 411(2006)
17 U. F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci., 48, 171(2003)
18 L. Capolungo, C. Jochum, M. Cherkaoui, J. Qu, Homogenization method for strength and inelastic behavior of nanocrystalline materials, Int. J. Plast., 21, 67(2005)
19 Y. G. Liu, J. Q. Zhou, L. Wang, S. Zhang, Y. Wang, Grain size dependent fracture toughness of nanocrystalline materials, Mater. Sci. Eng. A, 528, 4615(2011)
20 Y. G. Liu, J. Q. Zhou, T. D. Shen, Effect of nano-metal particles on the fracture toughness of metal-ceramic composite, Mater. Des., 45, 67(2013)
21 J. Trajkovski, R. Kunc, V. Pepel, I. Prebil, Flow and fracture behavior of high-strength armor steel PROTAC 500, Mater. Des., 66, 37(2015)
22 D. N. Zhang, Q. Q. Shangguan, C. J. Xie, F. Liu, A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy, J. Alloys Compd., 619, 186(2015)
23 H. Y. Zhan, G. Wang, D. Kent, M. Dargusch, Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson-Cook and modified Zerilli-Armstrong models, Mater. Sci. Eng., A, 612, 71(2014)
24 J. Frontan, Y. M. Zhang, M. Dao, J. Lu, F. Galvez, A. Jerusalem, Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel, Acta Mater., 60, 1353(2012)
25 J. Q. Zhou, R. T. Zhu, Z. Z. Zhang, A constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range, Mater. Sci. Eng. A, 480, 419(2008)
26 X. Guo, R. Ji, G. J. Weng, L. L. Zhu, J. Lu, Micromechanical simulation of fracture behavior of bimodal nanostructured metals, Mater. Sci. Eng. A, 618, 479(2014)
27 R. T. Zou, D. W. He, X. K. Wei, R. C. Yu, T. C. Lu, X. H. Chang, S. M. Wang, L. Lei, Nanosintering mechanism of MgAl2O4 transparent ceramics under high pressure, Mater. Chem. Phys., 123, 529(2010)
28 H. P. Klug, L. E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed., Wiley, New York(1974), p. 625
[1] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[2] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[3] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[4] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[5] Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. 材料研究学报, 2018, 32(3): 177-183.
[6] Xuemeng WANG,Siqian ZHANG,Ziyao YUAN,Lijia CHEN. Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy[J]. 材料研究学报, 2017, 31(6): 409-414.
[7] LI Yuhai, ZHANG Baibing, DONG Xuguang, WANG Shuai. Comparative Study on Corrosion Resistance of Micro Arc Oxidation Ceramic Coatings on Mg-Mn-RE Alloy[J]. 材料研究学报, 2016, 30(3): 235-240.
[8] Yongwen JIANG,Tao NIU,Chenggang AN,Xinlang WU,Caixia ZHANG,Xiaoli DAI. Strain Aging Behavior of X70 Pipeline Steel[J]. 材料研究学报, 2016, 30(10): 767-772.
[9] Lin LU,Longgang HOU,Hebin WANG,Jinxiang ZHANG,Hua CUI,Jinfeng HUANG,Yongan ZHANG,Jishan ZHANG. Hot Deformation of Spray-Formed Nb-Containing High Speed Steel—A Study Using Processing Map[J]. 材料研究学报, 2015, 29(7): 496-504.
[10] Jie LIU,Xuyan LIU,Fang LIU,Fei WANG,Deng PAN. Fabrication of a Three-dimensional Nanoporous Cu-Ti Alloy with Excellent Electrochemical Capacitance Performance[J]. 材料研究学报, 2015, 29(12): 913-920.
[11] Tinghui JIANG,Manping LIU,Xuefeng XIE,Jun WANG,Zhenjie WU,Qiang LIU,J. Roven Hans. Grain Boundary Structure of Al–Mg Alloys Processed by High Pressure Torsion[J]. 材料研究学报, 2014, 28(5): 371-379.
[12] DAI Qifeng,SONG Renbo**,CAI Hengjun,YU Sanchuan,GAO Zhe. Tensile Mechanical Behaviour of Ultra-High Strength Cold Rolled Dual Phase Steel DP1000 at High Strain Rates[J]. 材料研究学报, 2013, 27(1): 25-31.
[13] LI Jia YU Lianxu SUN Wenru? ZHANG Weihong LIU Fang QI Feng GUO Shouren HU Zhuang. Effect of Solidification Rates on Microstructures and Segregation of IN718 Alloy[J]. 材料研究学报, 2010, 24(2): 118-122.
[14] YANG Wei JIANG Bailing SHI Huiying XIAN Linyun. Microstructure and corrosion resistance of composite coating on magnesium alloy by microarc oxidation and electrophoresis[J]. 材料研究学报, 2009, 23(4): 421-425.
No Suggested Reading articles found!