Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (4): 425-430    DOI:
论文 Current Issue | Archive | Adv Search |
Effects of the Compressive Fatigue Loading on the Thermal Conductivity Behavior of 2D–C/C Composites
LU Jinhua1,  YANG Xiaohui1,  LI Hejun1,  GAO Wei2, ZHANG Shouyang1
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
2.Xi’an aerospace composite materials research institute, Xi’an 710025
Cite this article: 

LU Jinhua YANG Xiaohui LI Hejun GAO Wei ZHANG Shouyang. Effects of the Compressive Fatigue Loading on the Thermal Conductivity Behavior of 2D–C/C Composites. Chin J Mater Res, 2012, 26(4): 425-430.

Download:  PDF(942KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The compressive fatigue experiment of 2D–C/C composites was made under the stress level of 1000 N, 2000 N and 3000 N, cycling times of 104, 105 and 3×105, the thermal conductivity behavior is tested before and after the fatigue loading, and the effects of compressive fatigue loading conditions on the thermal conductivity behavior of the composites were investigated. The results show that compressive fatigue loading does not change the law about the thermal diffusivity coefficient and specific heat capacity improve with the increasing temperature. However, after the compressive fatigue loading, the thermal conductivity coefficient, thermal diffusivity coefficient of the samples reduce with the increasing of the stress level and cycling times, while the specific heat capacity change little. The decline of the thermal conductivity is related to the fatigue damages generated and accumulated during the compressive fatigue loading after analysis.
Key words:  composites      2D–C/C composites      thermal conductivity coefficient      thermal diffusivity coefficient      compressive fatigue loading     
Received:  24 February 2012     
ZTFLH: 

TB332

 
Fund: 

Supported by the Foundation of State key laboratory on solidification No.G8QT0222 and National Natural Science Foundation of China No.50832004 and 50972120.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I4/425

1 Torsten Windhorst, Gordon Blount, Carbon–carbon: a summary of recent developments and applications, Materials & Design, 18(1), 11 (1997)

2 O.Siron, G.Chollon, H.Tsuda, H.Yamauchi, K.Maeda, K.Kosaka, Microstructural and mechanical properties of filler–added coal–tarpitch–based C/C composites: the damage and fracture process in correlation with AE waveform parameters, Carbon, 38(9), 1369(2000)

3 DENG Jingyi, LIU Wenchuan, DU Haifeng, thermal shock resistance of C/C composites, Chinese Journal of Materials Research, 15(3), 372(2001)

(邓景屹, 刘文川, 杜海峰, C/C复合材料的抗热应力因素, 材料研究学报,  15(3), 372(2001))

4 J.D.Buckley, Carbon/carbon materials and composites, (Park Ridge, New Jersey, Noyes Publications, 1993) p.1 

5 LUO Ruiying, CHENG Yonghong, Effects of perform and pyrolytic carbon structure on thermophysical properties of 2D carbon/carbon composites, Chinese Journal of Aeronautics,

17(2), 112(2004)

(罗瑞盈, 程永宏, 预制体结构和热解炭组织对二维碳/碳复合材料热物理性能影响, 中国航空学报(英文版),  17(2), 112(2004))

6 YU Shu, LIU Genshan, LI Xibin, XIONG Xiang, The main factors on heat conductivity for carbon–carbon composites, Rare Metal Materials and Engineering, 32(3), 213(2003)

(于 澍, 刘根山, 李溪滨, 熊 翔, 炭/炭复合材料热导率影响因素的研究, 稀有金属材料与工程,  32(3), 213(2003))

7 ZHAO Jianguo, LI Kezhi, LI Hejun, LI Aijun, XI Chen, Research on the thermal conductivity of C/C composites, Acta Aeronautica Et Astronautica Sinica, 6(4), 501(2005)

(赵建国, 李克智, 李贺军, 李爱军, 席琛, 碳/碳复合材料的导热性能的研究, 航空学报,  6(4), 501(2005))

8 XU Huijuan, XIONG Xiang, YI Maozhong, HUANG Baiyun, WANG Hui, Thermal conductivity properties of carbon/carbon composites with thin felt laminate at high temperature, J. Cent. South Univ. (Science and Technology), 39(3), 500(2008)

(徐慧娟, 熊  翔, 易茂中, 黄伯云, 王 辉, 薄毡叠层炭/炭复合材料的高温导热性能, 中南大学学报(自然科学版),  39(3), 500(2008))

9 N.C.Gallego, D.D.Edie, B.Nysten, J.P.Issi, J.W.Treleaven, G.V.Deshpande, The thermal conductivity of ribbon–shaped carbon fibers, Carbon, 38(7), 1003(2000)

10 J.M.Ting, M.L.Lake, Vapor–grown carbon–fiber reinforced carbon composites, Carbon, 33(5), 663 (1995)

11 N.K.Mahanta, A.R.Abramson, M.L.Lake, D.J.Burton, J.Chang, H.K.Mayer, J.L.Ravine, Thermal Conductivity of Carbon Nanofiber Mats, Carbon, 48(15), 489(2010)

12 LIAO Xiaoling, The fatigue behaviors and damage evolution of 3D braided C/C composites, Docotor’s degree thesis, Norhwestern Polytechnical University (2006)

(廖晓玲, 三维编织C/C复合材料的疲劳行为以及损伤演变研究, 博士学位论文, 西北工业大学(2006))

13 S.W.Case, K.L.Resifsnider, Fatigue of Composite Materials, Comprehensive Structural Integrity, 4, 4050(2003)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!