Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (1): 25-31    DOI:
论文 Current Issue | Archive | Adv Search |
Simulation and Experimental Research on Continuous Extending Rheo–extrusion Process for Producing 6201 Alloy Tube
GUAN Renguo, ZHAO Zhanyong, CAO Furong, ZHANG Qiusheng, HUANG Hongqian
School of Materials and Metallurgy, Northeastern University, Shenyang 110004
Cite this article: 

GUAN Renguo ZHAO Zhanyong CAO Furong ZHANG Qiusheng HUANG Hongqian. Simulation and Experimental Research on Continuous Extending Rheo–extrusion Process for Producing 6201 Alloy Tube. Chin J Mater Res, 2011, 25(1): 25-31.

Download:  PDF(1166KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Simulation and experimental investigation of temperature field distribution and metal flow behavior of 6201 alloy were conducted in this paper. The results show that during extending rheo– extrusion process, the isothermal lines of alloy deviate to the roll side in the roll–shoe gap, and semisolid region moves down little by little with the decrease of pouring temperature. Alloy melt in the roll–shoe gap flows by Newton laminar fluid law, and the velocity decreases gradually from the roll surface to the shoe surface where the velocity reaches 0 m·s−1. Alloy melt fills the extending cavity with a radial pattern layer by layer, and then it splits and concentrates. It also exhibits homogenous laminar flow. The flow velocity is maximal at the centers of the mould and the branch holes, and decreases gradually to the side wall. The flow lines on the cross section of the tube corresponding with the branch holes center and the wielding region are dense. But there is a transitional region where the flow line is sparse. The proper pouring temperature for producing 6201 alloy tube is between 750oC  and 780oC.
Key words:  synthesizing and processing technics        rheoforming       extending       tube       semisolid       temperature     
Received:  29 September 2010     
ZTFLH: 

TG146

 
Fund: 

Supported by National High Technology Research and Development Program of China No.2007AA03Z111, National Natural Science Foundation of China No.51034002 and No.50974038, and the Basic Scientific Research Operation of Center University No.N090502003.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I1/25

1 M.C.Flemings, Behavior of metal alloys in the semisolid state, Metall. Trans., 22A, 957(1991)

2 LUO Shoujing, TIAN Wentong, XIE Shuisheng, MAO Weimin, Semisolid process and application, The Chinese Journal of Nonferrous Metals, 10(6), 765(2000)

(罗守靖, 田文彤, 谢水生, 毛卫民, 半固态加工技术及应用, 中国有色金属学报,  10(6), 765(2000))

3 T.Haga, P.Kapranos, Simple rheocasting processes, Journal of Materials Processing Technology, 130/131, 594(2002)

4 Z.Fan, Semisolid metal processing, International Materials Reviews, 47(2), 49(2002)

5 J.B.Colleen, A.G.Mark, Current wrought magnesium alloys strengths and weaknesses, JOM, 57(5), 46(2005)

6 Y.Chino, M.Kobata, H.Wasaki, M.Mabuchi, An investigation of compressive deformation behaviour for AZ91 Mg alloy containing a small volume of liquid, Acta Materialia, 51, 3309(2003)

7 S.Ji, Z.Fan, M.J.Bevis, Semisolid processing of engineering alloys by a twin–screw rheomoulding process, Mater. Sci. Eng., A299, 210(2001)

8 GUAN Renguo, MA Weimin, Theory and Technology of Semisolid Metal Processing, (Beijing, Metallurgy Industrial Press, 2005) p.8

(管仁国, 马伟民,  金属半固态成形理论与技术  (北京, 冶金工业出版社, 2005) p.8)

9 MAO Weimin, CUI Chenglin, ZHAO Aimin, SUN Feng, Dynamical coarsening processes of microstructures in non–dendritic AlSi7Mg alloy remelted in semisolid state, Transactions of Nonferrous Metals Society of China, 10(1), 25(2000)

10 B.C.YANG, S.M.ZHANG, J.XU, L.K.SHI, Z.Fan, Hot compressive deformation of rheocast AZ31 magnesium alloy, Solid State Phenomena, 116/117, 742(2006)

11 Zesheng JI, Maoliang HU, Xiaoping ZHENG, Effect of holding time on thixotropic fluidity of semi–solid AZ91D magnesium alloy, J. Mater. Sci. Technol., 23(2), 247(2007)

12 GUAN Renguo,WEN Jinglin, LIU Xianghua, FEM analysis of aluminum AA2017 alloy thermal/fluid multiple fields during a single–roll stirring process, Mater. Sci. Tech., 19(4), 503(2003)

13 GUAN Renguo, WANG Shuncheng, WEN Jinglin, LIU Xiang hua, Continuous semisolid extending–extrusion process for producing AA2017 aluminum alloy flat bar, Mater. Sci. Tech., 22(6), 706(2006)

14 WEN Jinglin, GUAN Renguo, LIU Xianghua, Manufaeturing semisolid A2017 alloy by SRS proeess and semisolid extending forming, Chinese Journal of Materials Research,

17(1), 56(2003)

(温景林, 管仁国, 刘相华, A2017半固态合金的半固态扩展成形, 材料研究学报,  17(1), 56(2003))

15 C.L.Matin, S.B.Brown, D.Favier, M.Suery, Shear deformation of high solid fraction (>0.6) semisolid Sn–Pb under various structures, Mater. Sci. Eng., A202, 111(1995)
[1] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[3] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[4] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[5] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[6] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[7] ZHANG Jiajun, LUO Xinghong, KONG Yafei, ZHANG Guiyuan, LI Yang. Effect of Gravity on Primary Phase Morphology and Peritectic Reaction of Sn-20% Ni Alloy[J]. 材料研究学报, 2023, 37(2): 111-119.
[8] WANG Xingping, XUE Wenbin, WANG Wenxuan. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. 材料研究学报, 2023, 37(10): 759-769.
[9] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[10] NING Bo, LI Zhichao, WU Huibin, ZHANG Bingjun, HUANG Manli, DING Chao. Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel[J]. 材料研究学报, 2022, 36(9): 660-666.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] ZHOU Haitao, HOU Xiangwu, WANG Yanbo, XIAO Lv, YUAN Yong, SUN Jingli. High-temperature Deformation Behavior and Properties of High Nb Containing TiAl Alloy[J]. 材料研究学报, 2022, 36(6): 471-480.
[13] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[14] ZHAO Chaofeng, ZHENG Xiaoyan, LI Kairui, JIA Shikui, ZHANG Ming, LI Yesheng, WU Ziping. Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current[J]. 材料研究学报, 2022, 36(5): 373-380.
[15] YU Xingfu, WANG Shijie, ZHENG Dongyue, WANG Quanzhen, SU Yong, ZHAO Wenzeng, XING Fei. Effect of Graded Solution Treatments on Microstructure and Hardness of 8Cr4Mo4V Steel[J]. 材料研究学报, 2022, 36(4): 287-297.
No Suggested Reading articles found!