Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (5): 547-549    DOI:
论文 Current Issue | Archive | Adv Search |
The Preparation of Microcrystalline Si Films Deposited by ECR-PECVD Using SiH4+Ar
CHENG Hua, ZHANG Xin, ZHANG Guangcheng, LIU Ruhong, WU Aimin, SHI Nanlin
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2.Armor Technique Institute of PLA, Changchun 130117
3.Dalian University of Technology, Dalian 116024
Cite this article: 

CHENG Hua ZHANG Xin ZHANG Guangcheng LIU Ruhong WU Aimin SHI Nanlin. The Preparation of Microcrystalline Si Films Deposited by ECR-PECVD Using SiH4+Ar. Chin J Mater Res, 2010, 24(5): 547-549.

Download:  PDF(617KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Microcrystalline silicon films were prepared using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR--PECVD). The effects of the microwave power on deposition rate, crystallinity, grain size and the configuration of H existing in microcrystalline silicon films were investigated. The results show that the crystallinity increases and the concentration of hydrogen decreases monotonously with the increasing of the microwave power. But the deposition rate first increases monotonously, and then decreases. Optimized microwave power is 600 W for the highest deposition rate. <111> orientation is the only dominant crystal texture for films obtained with different power.
Key words:  synthesizing and processing technics       microcrystalline silicon film       Ar-dilution       ECR-PECVD       microwave power     
Received:  07 June 2010     
ZTFLH: 

O484

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I5/547

[1] A. Fontcuberta i Morral, J. Bertomeu, P. Roca i Cabarrocas, The role of hydrogen in the formation of microcrystalline silicon, Materials Science and Engineering B, 69–70, 559–563 (2000) [2] Michio Kondo, Makoto Fukawa, Lihui Guo, et al. High rate growth of microcrystalline silicon at low temperatures, Journal of Non-Crytalline Solids, 266-269, 84-89 (2000) [3] Rui Huang, Xuanying Lin, Wenyong Huang, et al. Effect of Hydrogen on the Low Temperature Growth of Polycrystalline Silicon Film Deposited by SiCl4/H2, Thin Solid Films, 513, 380-384 (2006) [4] N. H. Nickel, N. M. Johnson, J. Walker, Hydrogen induced generation of acceptorlike defects in polycrystalline silicon, Physical Review Letters, 75, 3720-3723 (1995) [5] G.Tureban, Y. Catherine, and B. Grolleau, Mass spectrometry of a silane glow discharge during plasma deposition of a-Si: H films, Thin Solid Films, 67, 309 (1980) [6] Liu Guohan, Ding Yi, He Deyan, et al. Investigation of deposition of hydrogenated amorphous silicon thin film with HW-MWECR-CVD system. Acta Energiae Solaris Sinica, 27, 986-989 (2006) [7] H. Cheng, A. M. Wu, N. L. Shi, L. S. Wen, Effect of Ar on polycrystalline Si films deposited by ECR-PECVD using SiH4. Journal of Material Science and Technology, 24, 690-692 (2008) [8] B. Strahma, A.A. Howling, L. Sansonnens, Microcrystalline silicon deposited at high rate on large areas from pure silane with efficient gas utilization, Solar Energy Materials & Solar Cells, 91, 495–502 (2007) [9] L Sansonnens, A A Howling, Ch Hollenstein, et al. The role of metastable atoms in argon-diluted silane radiofrequency plasmas, J. Phys. D: Appl. Phys., 27, 1406-1411 (1994) [10] W. J. Soppe, C. Devilee, M. Geusebroek, et al. The effect of argon dilution on deposition of microcrystalline silicon by microwave plasma enhanced chemical vapor deposition, Thin Solid Films, 515, 7490-7494 (2007) [11] E. Amanatides, S. Stamou, D. Mataras, Gas phase and surface kinetics in plasma enhanced chemical vapor deposition of microcrystalline silicon: The combined effect of rf power and hydrogen dilution, J. Appl. Phys., 90, 5786 (2001) [12] G. Cicalaa, P. Brunob, A. M. Losaccoc, PECVD of hydrogenated diamond-like carbon films from CH4–Ar mixtures: growth chemistry and material characteristics, Diamond and Related Materials, 13, 1361–1365 (2004) [13] Wen-Chu Hsiao, Chuan-Pu Liu, Ying-Lang Wang, Thermal prosperities of hydrogenated amorphous silicon prepared by high-density plasma chemical vapor depositon, Journal of Physics and Chemistry of Solids, 69, 648-652 (2008) [14] Debajyoti Das, Madhusudan Jana, A. K. Barua, Heterogeneity in microcrystalline-transition state: Origin of Si-nucleation and microcrystallization at higher rf power from Ar-diluted SiH4 plasma, Journal of Applied Physics, 89, 3041-3048 (2001) [15] G. Ambrosone, U. Coscia, S. Lettieri, Microcrystalline silicon thin films grown at high deposition rate by PECVD, Thin Solid Films, 511 – 512, 280 – 284 (2006)
[1] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[2] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[3] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[4] CAI Guodong, CHENG Xiyun, WANG Dian. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates[J]. 材料研究学报, 2020, 34(8): 635-640.
[5] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[6] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[7] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[8] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[9] Bin QIN,Qun WANG,FuMeng WANG,LiE JIN,XiaoLing XIE,Qing CAO. Preparation of Needle Cokes with High Electrical Conductivity and Low Coefficient of Thermal Expansion[J]. 材料研究学报, 2019, 33(1): 53-58.
[10] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[11] Yanwei LI, Zhiping XIE, Canzheng LIU, Jinhuan YAO, Jiqiong JIANG, Jianwen YANG. Preparation and Lithium Storage Performance of Two Dimensional Fold-like V2O5 Nanomaterial[J]. 材料研究学报, 2017, 31(5): 374-380.
[12] Chengdong LI, Zhilei YAO, Ju LI, Jin XU, Xin XIONG. Preparation and Electrochemical Performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries[J]. 材料研究学报, 2017, 31(5): 394-400.
[13] TANG Zhaohui, DING Xueyong, DONG Yue, LIU Chenghong, WEI Guo. Influence of w(MgO) on Viscous Flow Property of High Ti-containing Blast Furnace Slag[J]. 材料研究学报, 2016, 30(6): 443-447.
[14] TANG Xianyi, WEI Xiaohui, XU Deping, ZHANG Haiyong, HE Xin, XIONG Chu'an, TANG Hanying. Removal of QI from Medium-temperature Coal Tar Pitch and Preparation of Needle Coke through Carbonization[J]. 材料研究学报, 2016, 30(6): 448-456.
[15] ZHANG Juan, CHEN Xiujuan, ZHANG Penglin. Synthesis and Electrochemical Properties of Flower-like SnS2 by Triton X-100 Assisted Hydrothermal Method as Negative Electrode Material for Lithium Ion Batteries[J]. 材料研究学报, 2016, 30(1): 63-67.
No Suggested Reading articles found!