|
|
Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures |
WANG Henglin1, DING Hanlin1( ), CHAI Feng2, LUO Xiaobing2, WANG Zijian1, XIANG Chongchen1 |
1.School of Iron and Steel, Soochow University, Suzhou 215006, China 2.Department of Structure Steels, Central Iron and Steel Research Institute, Beijing 100081, China |
|
Cite this article:
WANG Henglin, DING Hanlin, CHAI Feng, LUO Xiaobing, WANG Zijian, XIANG Chongchen. Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures. Chinese Journal of Materials Research, 2025, 39(6): 401-412.
|
Abstract The effect of heat treatments including quenching and tempering on the microstructure and mechanical properties of Cu-bearing high strength low alloy steel after being hot rolled at different temperatures were studied by SEM, TEM, STEM-HAADF and SASX. The results show that after being hot rolled at different temperatures, the test steels presented a microstructure of ferrite + bainite, however, which after quenching and tempering transformed to tempered martensite and a large amount of dispersed nano precipitates as their primary microstructure characteristics. The nano precipitates mainly consist of Cu-rich particles and Cr carbides. The results of TEM observation show that two types of precipitation modes, i.e. 9R precipitates with or without twins, can be found for the precipitation of Cu-rich particles in the test steel. The ambient temperature yield strength and low temperature impact toughness (especially at -84 oC) of the test steel can be significantly improved by quenching and tempering treatment, while the ultimate tensile strength is slightly decreased. The improvement in comprehensive mechanical properties of the test steel may be mainly ascribed to the precipitation of Cu-rich particles.
|
Received: 31 May 2024
|
|
Fund: National Natural Science Foundation of China(52174367);Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX23_3239) |
Corresponding Authors:
DING Hanlin, Tel: 18896736263, E-mail: dinghanlin@suda.edu.cn
|
1 |
Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels[J]. Acta Mater., 2013, 61: 5996
|
2 |
Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles[J]. Acta Mater., 2015, 97: 58
|
3 |
Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions[J]. Acta Mater., 2019, 172: 150
doi: 10.1016/j.actamat.2019.04.041
|
4 |
Jiang Y, Lu X H, Wu X X, et al. Microstructure and mechanical properties of a Cu/NiAl nanoprecipitate strengthened dual-phase steel[J]. Mater. Charact., 2023, 196: 112594
|
5 |
Thompson S W. Interrelationships between yield strength, low-temperature impact toughness, and microstructure in low-carbon, copper-precipitation strengthened, high-strength low-alloy plate steels[J]. Mater. Sci. Eng., 2018, 711A: 424
|
6 |
Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels[J]. Mater. Sci. Eng., 2001, 318A: 197
|
7 |
Far A R H, Anijdan S H M, Abbasi S M. The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type[J]. Mater. Sci. Eng., 2019, 746A: 384
|
8 |
Ghosh S K, Bandyopadhyay P S, Kundu S, et al. Copper bearing microalloyed ultrahigh strength steel on a pilot scale: microstructure and properties[J]. Mater. Sci. Eng., 2011, 528A: 7887
|
9 |
Ghosh A, Mishra B, Das S, et al. Microstructure, properties, and age hardening behavior of a thermomechanically processed ultralow-carbon Cu-bearing high-strength steel[J]. Metall. Mater. Trans., 2005, 36A: 703
|
10 |
Kondo Y. Behaviour of copper during high temperature oxidation of steel containing copper[J]. ISIJ Int., 2004, 44: 1576
|
11 |
Yin L, Balaji S, Sridhar S. Effects of nickel on the oxide/metal interface morphology and oxidation rate during high-temperature oxidation of Fe-Cu-Ni alloys[J]. Metall. Mater. Trans., 2010, 41B: 598
|
12 |
Mandal S, Tewary N K, Ghosh S K, et al. Thermo-mechanically controlled processed ultrahigh strength steel: Microstructure, texture and mechanical properties[J]. Mater. Sci. Eng., 2016, 663A: 126
|
13 |
Ye Q B, Liu Z Y, Yang Y, et al. Effect of rolling temperature and ultrafast cooling rate on microstructure and mechanical properties of steel plate[J]. Metall. Mater. Trans., 2016, 47A: 3622
|
14 |
Chen Y, Zhang D T, Liu Y C, et al. Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels[J]. Mater. Charact., 2013, 84: 232
|
15 |
Ma Z Q. Effect of quenching and tempering heat treatment process on microstructure and impact toughness of EH47 high-strength ship plate steel[D]. Anshan: University of Science and Technology Liaoning, 2022
|
|
马志强. 调质热处理工艺对EH47高强船板钢显微组织和冲击韧性的影响[D]. 鞍山: 辽宁科技大学, 2022
|
16 |
Felfer P J, Killmore C R, Williams J G, et al. A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel[J]. Acta Mater., 2012, 60: 5049
|
17 |
Li X L, Wang Z D, Deng X T, et al. Precipitation behavior and kinetics in Nb-V-bearing low-carbon steel[J]. Mater. Lett., 2016, 182: 6
|
18 |
Tian Y, Yu H, Zhou T, et al. Revealing morphology rules of MX precipitates in Ti-V-Nb multi-microalloyed steels[J]. Mater. Charact., 2022, 188: 111919
|
19 |
Wen T, Hu X F, Song Y Y, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50(4): 447
doi: 10.3724/SP.J.1037.2013.00672
|
|
温 涛, 胡小锋, 宋元元 等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014, 50(4): 447
|
20 |
Wang J L, Wang S, Xi X H, et al. The role of copper in microstructure and toughness of intercritically reheated coarse grained heat affected zone in a high strength low alloy steel[J]. Mater. Charact., 2021, 181: 111511
|
21 |
Habibi H R. Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J]. Mater. Lett., 2005, 59: 1824
|
22 |
Sun M X, Zhang W N, Liu Z Y, et al. Direct observations on the crystal structure evolution of nano Cu-precipitates in an extremely low carbon steel[J]. Mater. Lett., 2017, 187: 49
|
23 |
Xie H, Wang W. Characterization on a complex crystal structure of nano-rich Cu phase in low alloy ferritic steel[J]. Chin. J. Rare Metals, 2018, 42(3): 325
|
|
解 辉, 王 伟. 低合金铁素体钢中纳米富Cu相复杂晶体结构的表征[J]. 稀有金属, 2018, 42(3): 325
|
24 |
Chai F, Wang Z M, Luo X B, et al. Effect of Ni on the features of Cu-rich precipitates in high-strength low alloy steel[J]. Mater. Rep., 2022, 36(11): 161
|
|
柴 锋, 王泽民, 罗小兵 等. Ni对高强度低合金钢中富Cu相析出特征的影响[J]. 材料导报, 2022, 36(11): 161
|
25 |
Han G, Shang C J, Misra R D K, et al. Solid phase transition of Cu precipitates in a low carbon TRIP assisted steel[J]. Physica, 2019, 569B: 68
|
26 |
Sun M X. Study on regulation mechanism for microstructure and mechanical properties of ultra-low carbon nano-sized Cu precipitation strengthened HSLA steel[D]. Shenyang: Northeastern University, 2017
|
|
孙明雪. 超低碳纳米富Cu相强化HSLA钢组织性能调控机理研究[D]. 沈阳: 东北大学, 2017
|
27 |
Zhang S Q, Hu X F, Du Y B, et al. Cross-section effect of Ni-Cr-Mo-B ultra-heavy steel plate for offshore platform[J]. Acta Metall. Sin., 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
|
|
张守清, 胡小锋, 杜瑜宾 等. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
|
28 |
Cui Z Q, Qin Y C. Metallography and Heat Treatment 3rd ed.[M]. Beijing: China Machine Press, 2020
|
|
崔忠圻, 覃耀春. 金属学与热处理(第3版)[M]. 北京: 机械工业出版社, 2020
|
29 |
Liu G. Study on impact toughness stability of multi-layer and multi-pass weld metal of heat-resistant steel thick plate[D]. Lanzhou: Lanzhou University of Technology, 2019
|
|
刘 刚. 耐热钢厚板多层多道焊缝金属冲击韧性稳定性研究[D]. 兰州: 兰州理工大学, 2019
|
30 |
Fu W, Li C N, Di X J, et al. Improvement of Cu-rich precipitation strengthening for high-strength low carbon steel strengthened via Ti-microalloying[J]. Mater. Lett., 2022, 316: 132031
|
31 |
Kan L Y, Ye Q B, Wang Q H, et al. Refinement of Cu-M2C precipitates and improvement of strength and toughness by Ti microalloying in a Cu-bearing steel[J]. Mater. Sci. Eng., 2021, 802A: 140678
|
32 |
Yuan X Q, Liu Z Y, Jiao S H, et al. Effects of nano precipitates in austenite on ferrite transformation start temperature during continuous cooling in Nb-Ti micro-alloyed steels[J]. ISIJ Int., 2007, 47: 1658
|
33 |
Ma X P, Miao C L, Langelier B, et al. Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb-Ti microalloyed steel[J]. Mater. Design, 2017, 132: 244
|
34 |
Inoue T, Yin F X, Kimura Y, et al. Delamination effect on impact properties of ultrafine-grained low-carbon steel processed by warm caliber rolling[J]. Metall. Mater. Trans., 2010, 41A: 341
|
35 |
Stubbers A, Balk T J. Quantitative SAXS analysis of precipitate characteristics limiting hot ductility in HSLA steels containing V, Nb & NbTi[J]. ISIJ Int., 2023, 63: 1044
|
36 |
Blankenburg M, Bäcke L, Claesson E, et al. Revealing precipitate development during hot rolling and cooling of a Ti-Nb micro-alloyed high strength low-alloy steel through X-ray scattering[J]. Adv. Eng. Mater., 2023, 25: 2201356
|
37 |
Antion C, Donnadieu P, Perrard F, et al. Hardening precipitation in a Mg-4Y-3RE alloy[J]. Acta Mater., 2003, 51: 5335
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|