Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (6): 401-412    DOI: 10.11901/1005.3093.2024.245
ARTICLES Current Issue | Archive | Adv Search |
Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures
WANG Henglin1, DING Hanlin1(), CHAI Feng2, LUO Xiaobing2, WANG Zijian1, XIANG Chongchen1
1.School of Iron and Steel, Soochow University, Suzhou 215006, China
2.Department of Structure Steels, Central Iron and Steel Research Institute, Beijing 100081, China
Cite this article: 

WANG Henglin, DING Hanlin, CHAI Feng, LUO Xiaobing, WANG Zijian, XIANG Chongchen. Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures. Chinese Journal of Materials Research, 2025, 39(6): 401-412.

Download:  HTML  PDF(28951KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of heat treatments including quenching and tempering on the microstructure and mechanical properties of Cu-bearing high strength low alloy steel after being hot rolled at different temperatures were studied by SEM, TEM, STEM-HAADF and SASX. The results show that after being hot rolled at different temperatures, the test steels presented a microstructure of ferrite + bainite, however, which after quenching and tempering transformed to tempered martensite and a large amount of dispersed nano precipitates as their primary microstructure characteristics. The nano precipitates mainly consist of Cu-rich particles and Cr carbides. The results of TEM observation show that two types of precipitation modes, i.e. 9R precipitates with or without twins, can be found for the precipitation of Cu-rich particles in the test steel. The ambient temperature yield strength and low temperature impact toughness (especially at -84 oC) of the test steel can be significantly improved by quenching and tempering treatment, while the ultimate tensile strength is slightly decreased. The improvement in comprehensive mechanical properties of the test steel may be mainly ascribed to the precipitation of Cu-rich particles.

Key words:  metallic materials      rolling temperature      quenched-tempered heat treatment      Cu-rich precipitation     
Received:  31 May 2024     
ZTFLH:  TG335.3  
Fund: National Natural Science Foundation of China(52174367);Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX23_3239)
Corresponding Authors:  DING Hanlin, Tel: 18896736263, E-mail: dinghanlin@suda.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.245     OR     https://www.cjmr.org/EN/Y2025/V39/I6/401

CSiMnCrNi+Cu+MoTiNbFe
0.050.180.640.623.5~4.00.0140.027Bal.
Table 1  Chemical composition of test steel (mass fraction, %)
SamplesR1R2R3R4R5R6
StrengthRp0.2 / MPa544563544576551571
Rm / MPa796805795827805820
A / %162117211921
Z / %777674737673
Impact energyAKv(-40 oC) / J1571291001264936
AKv(-84 oC) / J552814221413
Table 2  Mechanical properties of hot-rolled samples R1~R6
SamplesT1T2T3T4T5T6
StrengthRp0.2 / MPa686717680700690691
Rm / MPa727751725736735730
A / %18.52118212021
Z / %7574.573.573.574.573
Impact energyAKv(-40 oC) / J236264264258267254
AKv(-84 oC) / J213201216198182199
Table 3  Mechanical properties of quenched and tempered samples T1~T6
Fig.1  Microstructure of hot-rolled and tempered sample (a) R1, (b) R6, (c) T1, (d) T6
Fig.2  Phase transition temperature (a) and precipitation temperature (b) of the test steel calculated by JMatPro software
Fig.3  TEM micrographs of precipitates in R1 (a) and R6 (b) sample
Fig.4  TEM images of microstructure (a, d) and precipitates (b, c, e, f) in T1 and T6 sample (a~c) T1 (d~f) T6
Fig.5  STEM images and EDS analysis of precipitates in T1 sample (a) bright-field STEM (BF-STEM) micrograph of T1 sample, (b) STEM-HAADF micrograph of T1 sample, (c~e) element distribution images in EDS
Fig.6  STEM images and EDS analysis of precipitates in T6 sample (a) BF-STEM micrograph of T6 sample, (b) HAADF-STEM micrograph of T6 sample, (c~e) element distribution images in EDS
Fig.7  TEM images and EDS spectrum analysis of precipitates in R1 sample (a) precipitates in R1 sample, (b) HRTEM micrograph of precipitates in R1 sample, (c) fast Fourier transform (FFT) of R1 sample
Fig.8  Selected area electron diffraction (SAED) images of T1 (a) and T6 (b) sample
Fig.9  STEM-HRTEM micrographs of (a) T1 and (c) T6 sample, (b) FFT of Fig.9a, (d) FFT of Fig.9c
Fig.10  Small-angle X-ray scattering (SAXS) results of T1 and T6 samples
1 Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels[J]. Acta Mater., 2013, 61: 5996
2 Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles[J]. Acta Mater., 2015, 97: 58
3 Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions[J]. Acta Mater., 2019, 172: 150
doi: 10.1016/j.actamat.2019.04.041
4 Jiang Y, Lu X H, Wu X X, et al. Microstructure and mechanical properties of a Cu/NiAl nanoprecipitate strengthened dual-phase steel[J]. Mater. Charact., 2023, 196: 112594
5 Thompson S W. Interrelationships between yield strength, low-temperature impact toughness, and microstructure in low-carbon, copper-precipitation strengthened, high-strength low-alloy plate steels[J]. Mater. Sci. Eng., 2018, 711A: 424
6 Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels[J]. Mater. Sci. Eng., 2001, 318A: 197
7 Far A R H, Anijdan S H M, Abbasi S M. The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type[J]. Mater. Sci. Eng., 2019, 746A: 384
8 Ghosh S K, Bandyopadhyay P S, Kundu S, et al. Copper bearing microalloyed ultrahigh strength steel on a pilot scale: microstructure and properties[J]. Mater. Sci. Eng., 2011, 528A: 7887
9 Ghosh A, Mishra B, Das S, et al. Microstructure, properties, and age hardening behavior of a thermomechanically processed ultralow-carbon Cu-bearing high-strength steel[J]. Metall. Mater. Trans., 2005, 36A: 703
10 Kondo Y. Behaviour of copper during high temperature oxidation of steel containing copper[J]. ISIJ Int., 2004, 44: 1576
11 Yin L, Balaji S, Sridhar S. Effects of nickel on the oxide/metal interface morphology and oxidation rate during high-temperature oxidation of Fe-Cu-Ni alloys[J]. Metall. Mater. Trans., 2010, 41B: 598
12 Mandal S, Tewary N K, Ghosh S K, et al. Thermo-mechanically controlled processed ultrahigh strength steel: Microstructure, texture and mechanical properties[J]. Mater. Sci. Eng., 2016, 663A: 126
13 Ye Q B, Liu Z Y, Yang Y, et al. Effect of rolling temperature and ultrafast cooling rate on microstructure and mechanical properties of steel plate[J]. Metall. Mater. Trans., 2016, 47A: 3622
14 Chen Y, Zhang D T, Liu Y C, et al. Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels[J]. Mater. Charact., 2013, 84: 232
15 Ma Z Q. Effect of quenching and tempering heat treatment process on microstructure and impact toughness of EH47 high-strength ship plate steel[D]. Anshan: University of Science and Technology Liaoning, 2022
马志强. 调质热处理工艺对EH47高强船板钢显微组织和冲击韧性的影响[D]. 鞍山: 辽宁科技大学, 2022
16 Felfer P J, Killmore C R, Williams J G, et al. A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel[J]. Acta Mater., 2012, 60: 5049
17 Li X L, Wang Z D, Deng X T, et al. Precipitation behavior and kinetics in Nb-V-bearing low-carbon steel[J]. Mater. Lett., 2016, 182: 6
18 Tian Y, Yu H, Zhou T, et al. Revealing morphology rules of MX precipitates in Ti-V-Nb multi-microalloyed steels[J]. Mater. Charact., 2022, 188: 111919
19 Wen T, Hu X F, Song Y Y, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50(4): 447
doi: 10.3724/SP.J.1037.2013.00672
温 涛, 胡小锋, 宋元元 等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014, 50(4): 447
20 Wang J L, Wang S, Xi X H, et al. The role of copper in microstructure and toughness of intercritically reheated coarse grained heat affected zone in a high strength low alloy steel[J]. Mater. Charact., 2021, 181: 111511
21 Habibi H R. Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J]. Mater. Lett., 2005, 59: 1824
22 Sun M X, Zhang W N, Liu Z Y, et al. Direct observations on the crystal structure evolution of nano Cu-precipitates in an extremely low carbon steel[J]. Mater. Lett., 2017, 187: 49
23 Xie H, Wang W. Characterization on a complex crystal structure of nano-rich Cu phase in low alloy ferritic steel[J]. Chin. J. Rare Metals, 2018, 42(3): 325
解 辉, 王 伟. 低合金铁素体钢中纳米富Cu相复杂晶体结构的表征[J]. 稀有金属, 2018, 42(3): 325
24 Chai F, Wang Z M, Luo X B, et al. Effect of Ni on the features of Cu-rich precipitates in high-strength low alloy steel[J]. Mater. Rep., 2022, 36(11): 161
柴 锋, 王泽民, 罗小兵 等. Ni对高强度低合金钢中富Cu相析出特征的影响[J]. 材料导报, 2022, 36(11): 161
25 Han G, Shang C J, Misra R D K, et al. Solid phase transition of Cu precipitates in a low carbon TRIP assisted steel[J]. Physica, 2019, 569B: 68
26 Sun M X. Study on regulation mechanism for microstructure and mechanical properties of ultra-low carbon nano-sized Cu precipitation strengthened HSLA steel[D]. Shenyang: Northeastern University, 2017
孙明雪. 超低碳纳米富Cu相强化HSLA钢组织性能调控机理研究[D]. 沈阳: 东北大学, 2017
27 Zhang S Q, Hu X F, Du Y B, et al. Cross-section effect of Ni-Cr-Mo-B ultra-heavy steel plate for offshore platform[J]. Acta Metall. Sin., 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
张守清, 胡小锋, 杜瑜宾 等. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
28 Cui Z Q, Qin Y C. Metallography and Heat Treatment 3rd ed.[M]. Beijing: China Machine Press, 2020
崔忠圻, 覃耀春. 金属学与热处理(第3版)[M]. 北京: 机械工业出版社, 2020
29 Liu G. Study on impact toughness stability of multi-layer and multi-pass weld metal of heat-resistant steel thick plate[D]. Lanzhou: Lanzhou University of Technology, 2019
刘 刚. 耐热钢厚板多层多道焊缝金属冲击韧性稳定性研究[D]. 兰州: 兰州理工大学, 2019
30 Fu W, Li C N, Di X J, et al. Improvement of Cu-rich precipitation strengthening for high-strength low carbon steel strengthened via Ti-microalloying[J]. Mater. Lett., 2022, 316: 132031
31 Kan L Y, Ye Q B, Wang Q H, et al. Refinement of Cu-M2C precipitates and improvement of strength and toughness by Ti microalloying in a Cu-bearing steel[J]. Mater. Sci. Eng., 2021, 802A: 140678
32 Yuan X Q, Liu Z Y, Jiao S H, et al. Effects of nano precipitates in austenite on ferrite transformation start temperature during continuous cooling in Nb-Ti micro-alloyed steels[J]. ISIJ Int., 2007, 47: 1658
33 Ma X P, Miao C L, Langelier B, et al. Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb-Ti microalloyed steel[J]. Mater. Design, 2017, 132: 244
34 Inoue T, Yin F X, Kimura Y, et al. Delamination effect on impact properties of ultrafine-grained low-carbon steel processed by warm caliber rolling[J]. Metall. Mater. Trans., 2010, 41A: 341
35 Stubbers A, Balk T J. Quantitative SAXS analysis of precipitate characteristics limiting hot ductility in HSLA steels containing V, Nb & NbTi[J]. ISIJ Int., 2023, 63: 1044
36 Blankenburg M, Bäcke L, Claesson E, et al. Revealing precipitate development during hot rolling and cooling of a Ti-Nb micro-alloyed high strength low-alloy steel through X-ray scattering[J]. Adv. Eng. Mater., 2023, 25: 2201356
37 Antion C, Donnadieu P, Perrard F, et al. Hardening precipitation in a Mg-4Y-3RE alloy[J]. Acta Mater., 2003, 51: 5335
[1] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
[2] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[3] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[4] YUAN Xinyu, SHI Fei, LIU Jingxiao, ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming. Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics[J]. 材料研究学报, 2025, 39(6): 455-462.
[5] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[6] QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang, REN Yanjie, CHEN Jian. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries[J]. 材料研究学报, 2025, 39(5): 389-400.
[7] WU Yucheng, ZUO Tong, TAN Xiaoyue, ZHU Xiaoyong, LIU Jiaqin. Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material[J]. 材料研究学报, 2025, 39(5): 343-352.
[8] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[9] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[10] XU Congmin, SUN Shuwen, ZHU Wensheng, CHEN Zhiqiang, LI Chengchen. Influence of Ternary Compound Biocides on Corrosion Behavior of P110 Steel[J]. 材料研究学报, 2025, 39(4): 281-288.
[11] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[12] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[13] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[14] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[15] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
No Suggested Reading articles found!