Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (2): 103-112    DOI: 10.11901/1005.3093.2024.276
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Curd Polyimide Modified by Oligomeric Polyimide
ZHU Guohao, CHEN Ping(), XU Jilei, SUN Huimin
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

ZHU Guohao, CHEN Ping, XU Jilei, SUN Huimin. Preparation and Properties of Curd Polyimide Modified by Oligomeric Polyimide. Chinese Journal of Materials Research, 2025, 39(2): 103-112.

Download:  HTML  PDF(7585KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel oligomeric polyimide (SPI) incorporated with Cardo structures, flexible siloxane bonds, and phenylethynyl terminations was designed and synthesized. Then, the prepared SPI was blended with polyimide (PI) matrix in different proportions to produced SPI modified PI polymer. Upon curing, the SPI modified PI polymer exhibited significant improvements in thermal and mechanical properties. The glass transition temperature (Tg) of the cured blends increased from 382 oC for the PI matrix to 459 oC. Correspondingly, the tensile strength and tensile modulus were improved from 96.25 MPa and 1.83 GPa to 128.96 MPa and 2.41 GPa respectively. The enhanced thermal stability and mechanical performance of the modified PI may be attributed to the synergistic effects between the siloxane structures with the semi-interpenetrating polymer network (semi-IPNs) formed during the thermal crosslinking process.

Key words:  organic polymer materials      polyimide      thermal -crosslinking      semi-IPNs      thermal stability      mechanical property     
Received:  15 June 2024     
ZTFLH:  TB324  
Fund: Liaoning Revitalization Talents Program(XLYC1802085);National Natural Science Foundation of China(51873109);Dalian Science and Technology Innovation Fund Project(2019J11CY007)
Corresponding Authors:  CHEN Ping, Tel: (0411)84986100, E-mail: pchen@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.276     OR     https://www.cjmr.org/EN/Y2025/V39/I2/103

Fig.1  Synthesis route of SPI (a), PI (b) and physical image of cured PI polymer film modified by SPI (c)
Fig.2  FTIR spectra of nitro monomer BPFPS and diamine monomer APFPS (a) and 1H NMR spectrum of APFPS (b)
Fig.3  1H NMR spectrum (a) and 1H NMR spectrum (b) of SPI
Fig.4  FTIR spectra of uncured PI polymer film modified by SPI (a), FTIR spectra in the range of 2100~2300 cm-1 showcasing the pheny-lethynyl groups (b) and FTIR spectra of cured PI polymer film modified by SPI (c)
Fig.5  WAXD curves of SPI and uncured PI polymer film modified by SPI (a) and WAXD curves of cured PI polymer film modified by SPI (b)
Fig.6  DSC curves of (a) and Tgvs composition curves of the uncured PI polymer film modified by SPI (b)
SampleExperimentalAdditivity lawFOX eq.Pochan eq.
SPI/PI-0382382382382
SPI/PI-5373371358344
SPI/PI-10334360336313
SPI/PI-15325349318287
Table 1  Summary of Tg test values and theoretical calculation results of uncured PI polymer film modified by SPI (oC)
Fig.7  Thermal crosslinking process
Fig.8  DSC (a) and DSC in the range of 280~450 oC (b), DMA (c), TGA (d) and DTG (e) curves of cured PI polymer film modified by SPI
SampleDSCDMATGA
TgTgTd5%Td10%TmaxRw
SPI/PI-0382.03-556.23579.23580.6572.12
SPI/PI-5428.25430.61555.69577.16581.4875.21
SPI/PI-10440.89456.86547.01572.19584.4074.04
SPI/PI-15435.08459.80534.42565.14585.8172.94
Table 2  Thermal properties of cured PI polymer film modified by SPI (oC)
SampleTensile strength / MPaElastic modulus / GPaElongation at break / %
SPI/PI-096.251.835.47
SPI/PI-5113.751.959.95
SPI/PI-10128.962.219.57
SPI/PI-15115.022.418.17
Table 3  Mechanical properties of cured PI polymer film modified by SPI
Fig.9  SEM images of cured PI polymer film modified by SPI.Cured SPI/PI-0 (a), cured SPI/PI-5 (b), cured SPI/PI-10 (c), cured SPI/PI-15 (d)
Fig.10  Water contact angle plots for cured PI polymer film modified by SPI
1 Ma P C, Dai C T, Wang H Z, et al. A review on high temperature resistant polyimide films: Heterocyclic structures and nanocomposites [J]. Compos. Commun., 2019, 16: 84
2 Liu X J, Zheng M S, Chen G, et al. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties [J]. Energy Environ. Sci., 2022, 15(1): 56
3 Qian G T, Chen H Q, Song G L, et al. Superheat-resistant polyimides with ultra-low coefficients of thermal expansion [J]. Polymer, 2020, 196: 122482
4 Lian M, Lu X M, Lu Q H. Synthesis of superheat-resistant polyimides with high Tg and low coefficient of thermal expansion by introduction of strong intermolecular interaction [J]. Macromolecules, 2018, 51(24): 10127
5 Cooper S L, Mair A D, Tobolsky A V. A study of the mechanical behavior of polyimides [J]. Text. Res. J., 1965, 35(12): 1110
6 Tian Y, Luo Y F, Meng H C, et al. Fabrication of lightweight polyimide foams with exceptional mechanical and thermal properties [J]. Macromol. Rapid Commun., 2023, 44(21): 2300357
7 Li Q, Chen R H, Guo Y J, et al. Fluorinated linear copolyimide physically crosslinked with novel fluorinated hyperbranched polyimide containing large space volumes for enhanced mechanical properties and UV-shielding application [J]. Polymers, 2020, 12(1): 88
8 Jiang S H, Cheong J Y, Nam J S, et al. High-density fibrous polyimide sponges with superior mechanical and thermal properties [J]. ACS Appl. Mater. Interfaces, 2020, 12(16): 19006
9 Li Y H, Sun G H, Zhou Y, et al. Progress in low dielectric polyimide film-A review [J]. Prog. Org. Coat., 2022, 172: 107103
10 Peng W F, Lei H Y, Qiu L H, et al. Perfluorocyclobutyl-containing transparent polyimides with low dielectric constant and low dielectric loss [J]. Polym. Chem., 2022, 13(26): 3949
11 Bei R X, Qian C, Zhang Y, et al. Intrinsic low dielectric constant polyimides: relationship between molecular structure and dielectric properties [J]. J. Mater. Chem., 2017, 5C(48): 12807
12 Fan H, Xie T T, Wang C, et al. Low-dielectric polyimide constructed by integrated strategy containing main-chain and crosslinking network engineering [J]. Polymer, 2023, 279: 126035
13 Chen Z G, Zhou Y B, Wu Y C, et al. Fluorinated polyimide with polyhedral oligomeric silsesquioxane aggregates: toward low dielectric constant and high toughness [J]. Compos. Sci. Technol., 2019, 181: 107700
14 Connell J W, Smith Jr J G, Hergenrother P M, et al. Neat resin, adhesive and composite properties of reactive additive/PETI-5 blends [J]. High Perform. Polym., 2000, 12(2): 323
15 Yu P, Xue M Z, Liu Y G, et al. Effect of blending modifications for phenylethynyl-terminated polyimides [J]. Fibers Polym., 2020, 21: 282
16 Li X T, Zhang P Y, Dong J, et al. Preparation of low-κ polyimide resin with outstanding stability of dielectric properties versus temperature by adding a reactive Cardo-containing diluent [J]. Compos., 2019, 177B: 107401
17 Chen W, Ji M, Yang S Y. High thermal stable polyimide resins derived from phenylethynyl-endcapped fluorenyl oligoimides with low melt viscosities [J]. Chin. J. Polym. Sci., 2016, 34: 933
18 Yu P, Wang Y, Yu J R, et al. Development of novel cardo-containing phenylethynyl-terminated polyimide with high thermal properties [J]. Polym. Adv. Technol., 2017, 28(2): 222
19 Qu C H, Li X, Yang Z H, et al. Damping, thermal, and mechanical performances of a novel semi-interpenetrating polymer networks based on polyimide/epoxy [J]. J. Appl. Polym. Sci., 2019, 136(41): 48032
20 Tang H, Dong L S, Feng Z L. Polyimide and its blends [J]. Chin. J. Master. Res., 1996, 10(5): 449
汤 浩, 董丽松, 冯之榴. 聚酰亚胺及其共混物 [J]. 材料研究学报, 1996, 10(5): 449
21 Pan H Y, Pu H T, Jin M, et al. Semi-interpenetrating polymer networks of Nafion® and fluorine-containing polyimide with crosslinkable vinyl group [J]. Polymer, 2010, 51(11): 2305
22 Harris F W, Pamidimukkala A, Gupta R, et al. Synthesis and characterization of reactive end-capped poiymide oligomers [J]. J. Macromol. Sci., 1984, 21A(8-9): 1117
23 Cano R J, Jensen B J. Effect of molecular weight on processing and adhesive properties of the phenylethynyl-terminated polyimide LARC™-PETI-5 [J]. J. Adhes., 1997, 60(1-4): 113
24 Hergenrother P M, Connell J W, Smith Jr J G. Phenylethynyl containing imide oligomers [J]. Polymer, 2000, 41(13): 5073.
25 Smith Jr J G, Connell J W, Hergenrother P M, et al. High temperature transfer molding resins-II [A]. SAMPE Symposium and Exhibition [C]. California, 2001
26 Smith Jr J G, Connell J W, Hergenrother P M, et al. High temperature transfer molding resins based on 2,3,3',4'-biphenyltetracarboxylic dianhydride[A]. 47th International SAMPE Symposium and Exhibition[C]. Long Beach: NTRS, 2002
27 Chen W Y, Ho K S, Hsieh T H, et al. Simultaneous preparation of PI/POSS semi-IPN nanocomposites [J]. Macromol. Rapid Commun., 2006, 27(6): 452
28 Zhou D R, Yuan L L, Hong W J, et al. Molecular design of interpenetrating fluorinated polyimide network with enhanced high performance for heat-resistant matrix [J]. Polymer, 2019, 173: 66
29 Johnston N J, Srinivasan K, Peter R H. Toughening of PMR composites by gradient semi-interpenetrating networks [A]. 37th International SAMPE Symposium and Exhibition [C]. Anaheim: Society for the Advancement of Material and Process Engineering, 1992
30 Ke H J, Zhao L W, Zhang X H, et al. Performance of high-temperature thermosetting polyimide composites modified with thermoplastic polyimide [J]. Polym. Test., 2020, 90: 106746
31 Wood L A. Glass transition temperatures of copolymers [J]. J. Polym. Sci., 1958, 28(117): 319
32 Fox T G. Influence of diluent and of copolymer composition on the glass temperature of a polymer system [J]. Bull. Am. Phys. Soc., 1956, 1: 123
33 Pochan J M, Beatty C L, Pochan D F. Different approach for the correlation of the Tg of mixed amorphous systems [J]. Polymer, 1979, 20(7): 879
34 Fang X M, Xie X Q, Simone C D, et al. A solid-state 13C NMR study of the cure of 13C-labeled phenylethynyl end-capped polyimides [J]. Macromolecules, 2000, 33(5): 1671
35 Fang X M, Rogers D F, Scola D A, et al. A study of the thermal cure of a phenylethynyl-terminated imide model compound and a phenylethynyl-terminated imide oligomer (PETI-5) [J]. J. Polym. Sci., 1998, 36A(3): 461.
36 Fang X M, Hutcheon R, Scola D A. A study of the kinetics of the microwave cure of a phenylethynyl-terminated imide model compound and imide oligomer (PETI-5) [J]. J. Polym. Sci., 2000, 38A(14): 2526
37 Holland T V, Glass T E, McGrath J E. Investigation of the thermal curing chemistry of the phenylethynyl group using a model aryl ether imide [J]. Polymer, 2000, 41(13): 4965
38 Affolter S, Ritter A, Schmid M. Interlaboratory tests on polymers by differential scanning calorimetry (DSC): determination of glass transition temperature (Tg) [J]. Macromol. Mater. Eng., 2001, 286(10): 605
39 Ronova I A, Bruma M. Influence of chemical structure on glass transition temperature of polyimides [J]. Struct. Chem., 2010, 21: 1013
40 Grzybowski A. Glass transition and related phenomena [J]. Int. J. Mol. Sci., 2023, 24(10): 8685
41 Chen Z G, Zhang S, Feng Q, et al. Improvement in mechanical and thermal properties of transparent semi-aromatic polyimide by crosslinking [J]. Macromol. Chem. Phys., 2020, 221(12): 2000085
42 Yuan L L, Ji M, Yang S Y. Molecular weight controlled poly(amic acid) resins end-capped with phenylethynyl groups for manufacturing advanced polyimide films [J]. J. Appl. Polym. Sci., 2017, 134(43): 45168
43 Chang K Y, Chang H M, Lee Y D. Molecular composite. II. Novel block copolymer and semi-interpenetrating polymer network of rigid polyamide and flexible polyimide [J]. J. Polym. Sci., 1994, 32A(14): 2629
44 Jang B Z, Pater R H, Soucek M D, et al. Plastic deformation mechanisms in polyimide resins and their semi-interpenetrating networks [J]. J. Polym. Sci., 1992, 30B(7): 643
45 Li Q, Liao G F, Tian J, et al. Preparation of novel fluorinated copolyimide/amine-functionalized sepia eumelanin nanocomposites with enhanced mechanical, thermal, and UV-shielding properties [J]. Macromol. Mater. Eng., 2018, 303(2): 1700407
46 Liu J F, Fan W F, Lu G W, et al. Semi-interpenetrating polymer networks based on cyanate ester and highly soluble thermoplastic polyimide [J]. Polymers, 2019, 11(5): 862
47 Wohl C J, Belcher M A, Chen L, et al. Laser ablative patterning of copoly(imide siloxane)s generating superhydrophobic surfaces [J]. Langmuir, 2010, 26(13): 11469
doi: 10.1021/la100958r pmid: 20446721
48 Xiong L, Wang X L, Qi H X, et al. Synthesis of a new siloxane-containing alicyclic dianhydride and the derived polyimides with improved solubility and hydrophobicity [J]. J. Appl. Polym. Sci., 2013, 127(3): 1493
49 Liu N, Wei K, Wang L, et al. Organic-inorganic polyimides with double decker silsesquioxane in the main chains [J]. Polym. Chem., 2016, 7(5): 1158
[1] JIANG Fan, LI Wantong, ZHAO Shufa, SHI Ning, ZHANG Mengxia, FANG Qinghong, LI Donghan. Synthesis of High Performance Carboxyl-terminated Liquid Fluoroelastomers Based on Fluorination Addition Reaction[J]. 材料研究学报, 2025, 39(1): 11-20.
[2] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[3] ZHOU Jian, XIA Mengyue, ZHANG Hangfei, LIU Qiaojun. Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane[J]. 材料研究学报, 2024, 38(8): 585-592.
[4] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[5] BIAN Pengbo, HAN Xiuzhu, ZHANG Junfan, ZHU Shize, XIAO Bolv, MA Zongyi. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite[J]. 材料研究学报, 2024, 38(6): 401-409.
[6] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[7] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[8] TU Houtian, HU Xiaoqiang, YANG Renxian, WANG Qian, LI Dianzhong. Influence of Cerium on Microstructure and Mechanical Properties of Cast T15 High Speed Steel[J]. 材料研究学报, 2024, 38(12): 932-940.
[9] AO Shuangshuang, XU Jiachen, WANG Yuzuo, RUAN Dianbo, QIAO Zhijun. Preparation and Electrochemical Properties of Discarded Polylactic Acid Hard Carbon[J]. 材料研究学报, 2024, 38(11): 811-820.
[10] LI Yuxuan, DU Yonggang, SU Junming, WANG Zhi, ZHU Yongfei. Superhydrophobic Sponge Coated with Polybenzoxazine and ZnO for Oil-Water Separation[J]. 材料研究学报, 2024, 38(1): 71-80.
[11] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[12] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[13] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[15] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
No Suggested Reading articles found!