|
|
Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ |
WU Yingming1,2, JIANG Keda1,3, LIU Shengdan1,2,3( ), FAN Shitong4, QIN Qiuhui1,3, LI Jun1,3 |
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China 2.National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China 3.Key Laboratory of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China 4.Taishan City Kam Kiu Aluminium Extrusion Co., Ltd. Postdoctoral Innovation Base, Taishan 529261, China |
|
Cite this article:
WU Yingming, JIANG Keda, LIU Shengdan, FAN Shitong, QIN Qiuhui, LI Jun. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ. Chinese Journal of Materials Research, 2024, 38(5): 337-346.
|
Abstract The hot deformation behavior of 6013 Al-alloy at 530~575oC and strain rate of 0.001~0.1 s-1 was studied by hot compression simulation test. Based on the electron backscatter diffraction technique, the microstructure evolution and dynamic softening mechanism were discussed, while the so called Zener-Hollomon (Z) parameter was adopted to represent the combined effect of deformation temperature and strain rate. The results show that the flow stress of the alloy increases with the increase of ln Z, and the deformation activation energy of the alloy under steady state condition is 217.3 kJ/mol. With the increase of lnZ, the recrystallization area fraction and sub-grain size tend to decrease linearly. For 23.91 ≤ lnZ < 29.55, dynamic recrystallization is the main softening mechanism, in which geometric dynamic recrystallization is dominant. For 29.55 < lnZ ≤ 30.24, dynamic recovery is the main softening mechanism.
|
Received: 03 July 2023
|
|
Fund: National Key Research and Development Program of China(2023YFB3710404) |
Corresponding Authors:
LIU Shengdan, Tel: (0731)88830265, E-mail: lsd_csu@csu.edu.cn
|
1 |
Zhang Y, Jiang J, Wang Y, et al. Hot deformation behavior and microstructure evolution of hot-extruded 6A02 aluminum alloy[J]. Mater. Charact., 2022, 188: 111908
|
2 |
Ye T, Wu Y Z, Liu A M, et al. Deformation behavior and microscopic mechanism of extruded 6013-T4 aluminum alloy under dynamic impact load[J]. Chin. J. Mater. Res., 2019, 33(2): 109
|
|
叶 拓, 吴远志, 刘安民 等. 挤压态6013-T4铝合金在动态冲击载荷下的变形行为及其微观机理[J]. 材料研究学报, 2019, 33(2): 109
|
3 |
Yi H, Ding J, Ni C, et al. Hot compression deformation behavior and processing maps of Al-0.5Mg-0.4Si-0.1Cu alloy[J]. J. Mater. Res. Technol., 2022, 19: 4890
|
4 |
Li J, Wu X, Liao B, et al. Simulation of dynamic recrystallization in an Al-Mg-Si alloy during inhomogeneous hot deformation[J]. Mater. Today Commun., 2021, 29: 102810
|
5 |
Kumar N, Owolabi G M, Jayaganthan R, et al. Hot compression response of solution treated Al-Mg-Si alloy[J]. J. Mater. Eng. Perform., 2019, 28(12): 7602
doi: 10.1007/s11665-019-04459-4
|
6 |
Kai X, Chen C, Sun X, et al. Hot deformation behavior and optimization of processing parameters of a typical high-strength Al-Mg-Si alloy[J]. Mater. Des., 2016, 90: 1151
|
7 |
Yang Q Y, Yang D, Zhang Z Q, et al. Flow behavior and microstructure evolution of AA6A82 aluminium alloy with high copper during hot compression deformation at elevated temperature[J]. Trans. Nonferrous Met. Soc. China, 2016, 26(03): 649
|
8 |
Khamei A A, Dehghani K. Effects of strain rate and temperature on hot tensile deformation of severe plastic deformed 6061 aluminum alloy[J]. Mater. Sci. Eng. A, 2015, 627: 1
|
9 |
Fan X H, Li M, Li D Y, et al. Dynamic recrystallisation and dynamic precipitation in AA6061 aluminium alloy during hot deformation[J]. Mater. Sci. Technol., 2014, 30(11): 1263
|
10 |
Tang X. Study on dynamic compression deformation behavior of 6013 aluminum alloy[D]. Changsha: Hunan University, 2018
|
|
唐 徐. 6013铝合金动态压缩变形行为研究[D]. 长沙: 湖南大学, 2018
|
11 |
Li J, Wu X, Cao L, et al. Hot deformation and dynamic recrystallization in Al-Mg-Si alloy[J]. Mater. Charact., 2021, 173: 110976
|
12 |
Xiao G, Li L X, Ye T. Flow stress curve correction and constitutive equation of 6013 aluminum alloy plane hot compression[J]. Chin. J. Nonferrous. Met., 2014, 24(05): 1268
|
|
肖 罡, 李落星, 叶 拓. 6013铝合金平面热压缩流变应力曲线修正与本构方程[J]. 中国有色金属学报, 2014, 24(05): 1268
|
13 |
Xiao G, Li L X, Ye T. Optimization of hot deformation constitutive model of 6013 aluminum alloy based on material parameter correction[J]. Chin. J. Nonferrous. Met., 2014, 24(06): 1393
|
|
肖 罡, 李落星, 叶 拓. 基于材料参数修正的6013铝合金热变形本构模型优化[J]. 中国有色金属学报, 2014, 24(06): 1393
|
14 |
Liu S, Pan Q, Li H, et al. Characterization of hot deformation behavior and constitutive modeling of Al-Mg-Si-Mn-Cr alloy[J]. J. Mater. Sci., 2019, 54(5): 4366
|
15 |
Li H, Yuan X, Zheng W, et al. Flow stress equation for hot compression deformation of Al-Mg-Si alloy[J]. J. Shenyang Univ. Technol., 2012, 34(6): 650
|
16 |
Li W Y, Yang F L, Ma Z, et al. Hot deformation and mechanical properties of novel Al-Mg-Si-Cu alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20(8): 1501
|
17 |
Xiao G, Yang Q, Li L, et al. Constitutive analysis of 6013 aluminum alloy in hot plane strain compression process considering deformation heating integrated with heat transfer[J]. Met. Mater. Int., 2016, 22(1): 58
|
18 |
Wei T, Wang Y, Tang Z, et al. The constitutive modeling and processing map of homogenized Al-Mg-Si-Cu-Zn alloy[J]. Mater. Today Commun., 2021, 27: 102471
|
19 |
Yu Y, Pan Q, Wang W, et al. Dynamic softening mechanisms and Zener-Hollomon parameter of Al-Mg-Si-Ce-B alloy during hot deformation[J]. J. Mater. Res. Technol., 2021, 15: 6395
|
20 |
Xiao G, Yang Q, Li L. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method[J]. Trans. Nonferrous Met. Soc. China, 2016, 26(04): 1096
|
21 |
Xue J P, Huang D N, Zuo Z Z, et al. Effect of extrusion temperature on microstructure and mechanical properties of welded zone of 6005A aluminum alloy[J]. Chin. J. Nonferrous. Met., 2018, 28(07): 1291
|
|
薛江平, 黄东男, 左壮壮 等. 挤压温度对6005A铝合金焊合区域显微组织和力学性能的影响[J]. 中国有色金属学报, 2018, 28(07): 1291
|
22 |
Luo R, Cao Y, Bian H, et al. Hot workability and dynamic recrystallization behavior of a spray formed 7055 aluminum alloy[J]. Mater. Charact., 2021, 178: 111203
|
23 |
Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metall., 1966, 14(9): 1136
|
24 |
Chamanfar A, Alamoudi M T, Nanninga N E, et al. Analysis of flow stress and microstructure during hot compression of 6099 aluminum alloy (AA6099)[J]. Mater. Sci. Eng. A, 2019, 743: 684
|
25 |
Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Mater. Des., 2016, 111: 548
|
26 |
Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization[J]. Mater. Sci. Eng. A, 2005, 410-411: 152
|
27 |
Yu S, Chen L L, Luo R, et al. Dynamic recrystallization and microstructure evolution mechanism of superalloy GH4169[J]. Chin. J. Mater. Res., 2023, 37(03): 211
|
|
于 森, 陈乐利, 罗 锐 等. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(03): 211
|
28 |
Zhang J, Yi Y, Huang S, et al. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation[J]. Mater. Sci. Eng. A, 2021, 804: 140650
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|