Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (5): 337-346    DOI: 10.11901/1005.3093.2023.323
ARTICLES Current Issue | Archive | Adv Search |
Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ
WU Yingming1,2, JIANG Keda1,3, LIU Shengdan1,2,3(), FAN Shitong4, QIN Qiuhui1,3, LI Jun1,3
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China
3.Key Laboratory of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
4.Taishan City Kam Kiu Aluminium Extrusion Co., Ltd. Postdoctoral Innovation Base, Taishan 529261, China
Cite this article: 

WU Yingming, JIANG Keda, LIU Shengdan, FAN Shitong, QIN Qiuhui, LI Jun. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ. Chinese Journal of Materials Research, 2024, 38(5): 337-346.

Download:  HTML  PDF(8791KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot deformation behavior of 6013 Al-alloy at 530~575oC and strain rate of 0.001~0.1 s-1 was studied by hot compression simulation test. Based on the electron backscatter diffraction technique, the microstructure evolution and dynamic softening mechanism were discussed, while the so called Zener-Hollomon (Z) parameter was adopted to represent the combined effect of deformation temperature and strain rate. The results show that the flow stress of the alloy increases with the increase of ln Z, and the deformation activation energy of the alloy under steady state condition is 217.3 kJ/mol. With the increase of lnZ, the recrystallization area fraction and sub-grain size tend to decrease linearly. For 23.91 ≤ lnZ < 29.55, dynamic recrystallization is the main softening mechanism, in which geometric dynamic recrystallization is dominant. For 29.55 < lnZ ≤ 30.24, dynamic recovery is the main softening mechanism.

Key words:  metallic materials      6013 aluminum alloy      constitutive equation      microstructure evolution      softening mechanism     
Received:  03 July 2023     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2023YFB3710404)
Corresponding Authors:  LIU Shengdan, Tel: (0731)88830265, E-mail: lsd_csu@csu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.323     OR     https://www.cjmr.org/EN/Y2024/V38/I5/337

MgSiCuMnFeZnCrTiAl
0.850.620.600.200.050.100.060.05Bal.
Table 1  Chemical compositions of 6013 aluminum alloy (mass fraction, %)
Fig.1  OM image of homogenized 6013 aluminum alloy ingot
Fig.2  True stress-strain curves at different strain rates (a) 0.001 s-1, (b) 0.01 s-1, (c) 0.1 s-1
Fig.3  Relationship between steady-state stress, strain rate and deformation temperature of 6013 aluminum alloy under different deformation conditions (a) lnε˙-lnσ, (b) lnε˙-σ, (c) lnε˙-ln[sin(ασ)], (d) ln[sin(ασ)]-1000/T
Strain
rate / s-1
lnZ of different temperature
530oC545oC560oC575oC
0.00125.6425.0424.4723.91
0.0127.9427.3426.7726.21
0.130.2429.6529.0728.52
Table 2  lnZ under different thermal deformation conditions at true strain 1.0
Fig.4  IPF images and misorientation distribution at different temperatures and strain rates of 0.1 s-1 (a, a1) 530oC, (b, b1) 545oC, (c, c1) 560oC, (d, d1) 575oC
Strain rate / s-1Average equivalent circle size of grains at different temperature /μm
530oC545oC560oC575oC
0.001103.7 ± 33.5111.3 ± 39.2114.0 ± 42.6124.5 ± 47.8
0.0188.7 ± 39.779.4 ± 28.199.2 ± 32.4104.9 ± 37.2
0.170.0 ± 33.973.8 ± 26.480.3 ± 24.584.0 ± 36.4
Table 3  Average equivalent circle size of grains under different thermal deformation conditions
Fig.5  IPF images and misorientation distribution at different strain rates and deformation temperature of 560oC (a, a1) 0.001 s-1, (b, b1) 0.01 s-1
Fig.6  Recrystallization area fraction and sub-grain size under different lnZ (a) recrystallization area fraction, (b) sub-grain size
Fig.7  Grain boundary diagram and the corresponding GND diagram under different lnZ value (a, e) 24.47, (b, f, i) 26.77, (c, g, j) 28.52, (d, h, k) 30.24
Fig.8  Schematic of two geometric dynamic recrystallization mechanism (a) mechanism 1, (b) mechanism 2
Fig.9  Schematic of two continuous dynamic recrystallization mechanism (a) mechanism 1, (b) mechanism 2
Fig.10  Schematic of two discontinuous dynamic recrystallization mechanism (a) mechanism 1, (b) mechanism 2
1 Zhang Y, Jiang J, Wang Y, et al. Hot deformation behavior and microstructure evolution of hot-extruded 6A02 aluminum alloy[J]. Mater. Charact., 2022, 188: 111908
2 Ye T, Wu Y Z, Liu A M, et al. Deformation behavior and microscopic mechanism of extruded 6013-T4 aluminum alloy under dynamic impact load[J]. Chin. J. Mater. Res., 2019, 33(2): 109
叶 拓, 吴远志, 刘安民 等. 挤压态6013-T4铝合金在动态冲击载荷下的变形行为及其微观机理[J]. 材料研究学报, 2019, 33(2): 109
3 Yi H, Ding J, Ni C, et al. Hot compression deformation behavior and processing maps of Al-0.5Mg-0.4Si-0.1Cu alloy[J]. J. Mater. Res. Technol., 2022, 19: 4890
4 Li J, Wu X, Liao B, et al. Simulation of dynamic recrystallization in an Al-Mg-Si alloy during inhomogeneous hot deformation[J]. Mater. Today Commun., 2021, 29: 102810
5 Kumar N, Owolabi G M, Jayaganthan R, et al. Hot compression response of solution treated Al-Mg-Si alloy[J]. J. Mater. Eng. Perform., 2019, 28(12): 7602
doi: 10.1007/s11665-019-04459-4
6 Kai X, Chen C, Sun X, et al. Hot deformation behavior and optimization of processing parameters of a typical high-strength Al-Mg-Si alloy[J]. Mater. Des., 2016, 90: 1151
7 Yang Q Y, Yang D, Zhang Z Q, et al. Flow behavior and microstructure evolution of AA6A82 aluminium alloy with high copper during hot compression deformation at elevated temperature[J]. Trans. Nonferrous Met. Soc. China, 2016, 26(03): 649
8 Khamei A A, Dehghani K. Effects of strain rate and temperature on hot tensile deformation of severe plastic deformed 6061 aluminum alloy[J]. Mater. Sci. Eng. A, 2015, 627: 1
9 Fan X H, Li M, Li D Y, et al. Dynamic recrystallisation and dynamic precipitation in AA6061 aluminium alloy during hot deformation[J]. Mater. Sci. Technol., 2014, 30(11): 1263
10 Tang X. Study on dynamic compression deformation behavior of 6013 aluminum alloy[D]. Changsha: Hunan University, 2018
唐 徐. 6013铝合金动态压缩变形行为研究[D]. 长沙: 湖南大学, 2018
11 Li J, Wu X, Cao L, et al. Hot deformation and dynamic recrystallization in Al-Mg-Si alloy[J]. Mater. Charact., 2021, 173: 110976
12 Xiao G, Li L X, Ye T. Flow stress curve correction and constitutive equation of 6013 aluminum alloy plane hot compression[J]. Chin. J. Nonferrous. Met., 2014, 24(05): 1268
肖 罡, 李落星, 叶 拓. 6013铝合金平面热压缩流变应力曲线修正与本构方程[J]. 中国有色金属学报, 2014, 24(05): 1268
13 Xiao G, Li L X, Ye T. Optimization of hot deformation constitutive model of 6013 aluminum alloy based on material parameter correction[J]. Chin. J. Nonferrous. Met., 2014, 24(06): 1393
肖 罡, 李落星, 叶 拓. 基于材料参数修正的6013铝合金热变形本构模型优化[J]. 中国有色金属学报, 2014, 24(06): 1393
14 Liu S, Pan Q, Li H, et al. Characterization of hot deformation behavior and constitutive modeling of Al-Mg-Si-Mn-Cr alloy[J]. J. Mater. Sci., 2019, 54(5): 4366
15 Li H, Yuan X, Zheng W, et al. Flow stress equation for hot compression deformation of Al-Mg-Si alloy[J]. J. Shenyang Univ. Technol., 2012, 34(6): 650
16 Li W Y, Yang F L, Ma Z, et al. Hot deformation and mechanical properties of novel Al-Mg-Si-Cu alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20(8): 1501
17 Xiao G, Yang Q, Li L, et al. Constitutive analysis of 6013 aluminum alloy in hot plane strain compression process considering deformation heating integrated with heat transfer[J]. Met. Mater. Int., 2016, 22(1): 58
18 Wei T, Wang Y, Tang Z, et al. The constitutive modeling and processing map of homogenized Al-Mg-Si-Cu-Zn alloy[J]. Mater. Today Commun., 2021, 27: 102471
19 Yu Y, Pan Q, Wang W, et al. Dynamic softening mechanisms and Zener-Hollomon parameter of Al-Mg-Si-Ce-B alloy during hot deformation[J]. J. Mater. Res. Technol., 2021, 15: 6395
20 Xiao G, Yang Q, Li L. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method[J]. Trans. Nonferrous Met. Soc. China, 2016, 26(04): 1096
21 Xue J P, Huang D N, Zuo Z Z, et al. Effect of extrusion temperature on microstructure and mechanical properties of welded zone of 6005A aluminum alloy[J]. Chin. J. Nonferrous. Met., 2018, 28(07): 1291
薛江平, 黄东男, 左壮壮 等. 挤压温度对6005A铝合金焊合区域显微组织和力学性能的影响[J]. 中国有色金属学报, 2018, 28(07): 1291
22 Luo R, Cao Y, Bian H, et al. Hot workability and dynamic recrystallization behavior of a spray formed 7055 aluminum alloy[J]. Mater. Charact., 2021, 178: 111203
23 Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metall., 1966, 14(9): 1136
24 Chamanfar A, Alamoudi M T, Nanninga N E, et al. Analysis of flow stress and microstructure during hot compression of 6099 aluminum alloy (AA6099)[J]. Mater. Sci. Eng. A, 2019, 743: 684
25 Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Mater. Des., 2016, 111: 548
26 Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization[J]. Mater. Sci. Eng. A, 2005, 410-411: 152
27 Yu S, Chen L L, Luo R, et al. Dynamic recrystallization and microstructure evolution mechanism of superalloy GH4169[J]. Chin. J. Mater. Res., 2023, 37(03): 211
于 森, 陈乐利, 罗 锐 等. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(03): 211
28 Zhang J, Yi Y, Huang S, et al. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation[J]. Mater. Sci. Eng. A, 2021, 804: 140650
[1] LI Ruohao, HU Xiaoyu, WANG Zhongcheng, LI Hao, YANG Yong, XU Le, LIANG Enpu, HE Xiaofei. High-temperature Mechanical Properties and Strengthening Mechanism of New Secondary Hardened Steel 25CrMo3NiTiVNbZr[J]. 材料研究学报, 2024, 38(5): 390-400.
[2] WANG Qiang, ZHU Heyu, LIU Zhibo, ZHU Yi, LIU Peitao, REN Wencai. Electron Microscopy Study of Stacking Defects in β-In2Se3[J]. 材料研究学报, 2024, 38(5): 330-336.
[3] LIU Jiaxiao, HU Xiao, DING Hua. Effect of Aging Treatment on Microstructure Evolution and Mechanical Properties of Fe-12Mn-8Al-1C-3Cu Lightweight Steel[J]. 材料研究学报, 2024, 38(5): 356-364.
[4] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[5] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[6] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[7] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[8] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[9] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[10] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[11] WU Houran, DUAN Tigang, MA Li, SHAO Gangqin, ZHANG Hengyu, ZHANG Haibing. Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries[J]. 材料研究学报, 2024, 38(4): 257-268.
[12] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[13] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[14] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
[15] YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. 材料研究学报, 2024, 38(3): 232-240.
No Suggested Reading articles found!