Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (3): 168-176    DOI: 10.11901/1005.3093.2023.198
ARTICLES Current Issue | Archive | Adv Search |
Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes
LIU Rui1,2, ZHANG Dingdong2, ZHANG Hui1(), REN Wencai2, DU Jinhong2()
1.School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes. Chinese Journal of Materials Research, 2024, 38(3): 168-176.

Download:  HTML  PDF(6934KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thickness modulation is an important way to improve the performance of organic light-emitting diode (OLED) device. In this paper, flexible green OLED devices were constructed by vacuum thermal evaporation, using graphene as the transparent anode and 1,1-bis[4-[N,N-bis(p-tolyl)amino]phenyl]cyclohexane (TAPC) as the hole transport layer. The effects of evaporation speed on the morphology of the TAPC layer and the thickness of TAPC layer on the device performance were studied. First, 60 nm-thick TAPC layers were fabricated by controlling the evaporation speed at 0.05, 0.1 and 0.15 nm·s-1. It was found that the TAPC film had the lowest surface roughness of ~2.52 nm when the evaporation speed was 0.05 nm·s-1. Subsequently, TAPC layers with thicknesses of 50, 60, 70 and 80 nm were fabricated at a evaporation speed of 0.05 nm·s-1 and OLED devices were fabricated while keeping the thickness of other functional layers unchanged. A comparative study showed that the device with 70 nm-thick TAPC layer achieved the highest performance with a maximum brightness of 34350 cd·m-2 and a maximum external quantum efficiency (EQE) of 21.02%. Meanwhile, the device has excellent flexibility and the CIE chromaticity coordinate is located at (0.3140, 0.6386), which is very close to the chromaticity coordinate of standard green light. This study is significant for promoting the application of flexible graphene-based OLEDs in the fields of display and lighting and for the development of wearable optoelectronic devices.

Key words:  inorganic non-metallic materials      organic light-emitting diodes      hole transport layers      graphene      flexible optoelectronics     
Received:  23 March 2023     
ZTFLH:  TN383.1  
Fund: National Science Foundation of China(52002375);National Science Foundation of China(52272051);China Postdoctoral Science Fo-undation(2020M670812);China Postdoctoral Science Fo-undation(2020TQ0328);Liaoning Province Science and Technology Planning Project(2021-BS-003)
Corresponding Authors:  ZHANG Hui, Tel:13998243835, E-mail: krista9150@sina.com;DU Jinhong, Tel:(024)83970720, E-mail: jhdu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.198     OR     https://www.cjmr.org/EN/Y2024/V38/I3/168

Fig.1  Organic materials used in OLED devices (a) Molecular structure of TAPC, (b) Ir(ppy)2acac, (c) Bepp2 and (d) BPhen
Fig.2  Device structure (a) and Energy level diagram (b) of the G-OLED
Fig.3  Morphologies of PET/3L-G/MoO3 (a) and TAPC layer on PET/3L-G/MoO3 fabricated at evaporation rate of 0.05 nm·s-1(b), 0.1 nm·s-1 (c) and 0.15 nm·s-1 (d)
Fig.4  Device performance of OLED with different thickness of TAPC layers (a) current density-voltage (J-V) curve; (b) luminance-voltage (L-V) curve; (c) current efficiency-luminance (CE-L) curve; (d) power efficiency-luminance (PE-L) curve; (e) external quantum efficiency-luminance (EQE-L) curve; (f) electroluminescence spectra; (g) current effici-ency maximum; (h) power efficiency maximum; (i) external quantum efficiency maximum
PerformanceABCD
Lmax / cd·m-25901142603435017650
CDmax / mA·cm-217.5729.9259.9837.22
CEmax / cd·A-133.5848.1978.1050.56
PEmax / lm·W-112.4318.8060.0421.93
EQEmax / %9.2712.9121.0213.67
λ / nm530528525528
CIE (x, y)0.3802,0.3486,0.3140,0.3611,
0.59000.61690.63860.6074
Table 1  Performance parameters of G-OLED devices
Fig.5  Morphology of OLED devices with different thickness of TAPC (a) 50 nm; (b) 60 nm; (c) 70 nm; (d) 80 nm. (e) the structure of hole-only device; (f) current density-voltage characteristics of hole-only devices
Fig.6  Performance of flexible green G-OLED devices (a) CIE chromatogram of OLED device; (b) surface resistance change of graphene film after a thousand bending; (c) brightness change of OLED device after a thousand bending; (d) photograph and emission performance of flexible green OLED devices fabricated by using 70 nm-thick TAPC as HTL, lighting area of 2 mm × 2 mm; (e) photograph of lighting OLED device under bending
1 Salehi A, Fu X, Shin D H, et al. Recent advances in oled optical design [J]. Adv. Funct. Mater., 2019, 29(15): 180883
2 Chen B, Liu B, Zeng J, et al. Efficient bipolar blue aiegens for high-performance nondoped blue oleds and hybrid white oleds [J]. Adv. Funct. Mater., 2018, 28(40): 1803369
doi: 10.1002/adfm.v28.40
3 Chiu T L, Xianyu H, Ge Z, et al. Transflective device with a transparent organic light-emitting diode and a reflective liquid-crystal device [J]. J. Soc. Inf. Disp., 2009, 17(12): 1009
doi: 10.1889/JSID17.12.1009
4 Sim B, Moon C K, Kim K H, et al. Quantitative analysis of the efficiency of oleds [J]. ACS Appl. Mater. Interfaces, 2016, 8(48): 33010
doi: 10.1021/acsami.6b10297
5 Ding B F, Alameh K. High-contrast tandem organic light-emitting devices employing semitransparent intermediate layers of lif/al/c60 [J]. J. Phys. Chem. C, 2012, 116(46): 24690
doi: 10.1021/jp308816w
6 Fukagawa H, Sasaki T, Tsuzuki T, et al. Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes [J]. Adv. Mater., 2018, 30(28): 1706768
doi: 10.1002/adma.v30.28
7 Khan A, Xu W, Wei F X, et al. Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized electron and hole transport layers [J]. Solid State Commun., 2007, 144(7-8): 343
doi: 10.1016/j.ssc.2007.08.023
8 Gan Z, Zhu W, Wei B, et al. Electroluminescence characteristics of organic thin film pumped by photoluminescence [J]. J. Optoelectron. Laser, 2009, 20(7): 877
9 Zhuang J, Li W, Su W, et al. Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium(iii) complex as a sky-blue dopant [J]. Org. Electron., 2013, 14(10): 2596
doi: 10.1016/j.orgel.2013.06.029
10 Zhou L, Kwok C C, Cheng G, et al. Efficient red organic electroluminescent devices by doping platinum(ii) schiff base emitter into two host materials with stepwise energy levels [J]. Opt. Lett., 2013, 38(14): 2373
doi: 10.1364/OL.38.002373 pmid: 23939052
11 Zhang Z Q, Liu Y P, Dai Y F, et al. High-efficiency phosphorescent white organic light-emitting diodes with stable emission spectrum based on rgb separately monochromatic emission layers [J]. Chin. Phys. Lett., 2014, 31(4): 046801
12 Zhang Z, Yan P, Yue S, et al. High performance top-emitting and transparent white organic light-emitting diodes based on al/cu/tcta transparent electrodes for active matrix displays and lighting applications [J]. Org. Electron., 2013, 14(6): 1452
doi: 10.1016/j.orgel.2013.03.007
13 Zhang Z, Xie G, Yue S, et al. Color stable and low driving voltage white organic light-emitting diodes with low efficiency roll-off achieved by selective hole transport buffer layers [J]. Org. Electron., 2012, 13(11): 2296
doi: 10.1016/j.orgel.2012.07.001
14 Udagawa K, Sasabe H, Cai C, et al. Low-driving-voltage blue phosphorescent organic light-emitting devices with external quantum efficiency of 30% [J]. Adv. Mater., 2014, 26(29): 5062
doi: 10.1002/adma.v26.29
15 Yang L, Cai F, Yan Y, et al. Conjugated small molecule for efficient hole transport in high-performance p-i-n type perovskite solar cells [J]. Adv. Funct. Mater., 2017, 27(31): 1702613
doi: 10.1002/adfm.v27.31
16 Wang G, Yin M, Miao Y, et al. Combining intrinsic (blue) and exciplex (green and orange-red) emissions of the same material (oct) in white organic light-emitting diodes to realize high color quality with a cri of 97 [J]. J. Mater. Chem. C, 2022, 10(17): 6654
doi: 10.1039/D2TC00711H
17 Nakanotani H, Higuchi T, Furukawa T, et al. High-efficiency organic light-emitting diodes with fluorescent emitters [J]. Nat. Commun., 2014, 5: 4016
doi: 10.1038/ncomms5016 pmid: 24874292
18 Xu T, Zhou J G, Huang C C, et al. Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency [J]. ACS Appl. Mater. Interfaces, 2017, 9(12): 10955
doi: 10.1021/acsami.6b16094
19 Lee J I. Dependence of light-emitting characteristics of blue phosphorescent organic light-emitting diodes on electron injection and transport materials [J]. ETRI J., 2012, 34(5): 690
doi: 10.4218/etrij.12.0112.0014
20 Kang J S, Yoon J A, Yoo S I, et al. Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers [J]. Opt. Mater., 2015, 47: 78
doi: 10.1016/j.optmat.2015.07.003
21 Hwang J, Kyw Choi H, Moon J, et al. Multilayered graphene anode for blue phosphorescent organic light emitting diodes [J]. Appl. Phys. Lett., 2012, 100(13): 133304
doi: 10.1063/1.3697639
22 Cui L S, Liu Y, Yuan X D, et al. Bipolar host materials for high efficiency phosphorescent organic light emitting diodes: Tuning the homo/lumo levels without reducing the triplet energy in a linear system [J]. J. Mater. Chem. C, 2013, 1(48): 8177
doi: 10.1039/c3tc31675k
23 Chang C H, Wu S W, Huang C W, et al. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host [J]. Jpn. J. Appl. Phys., 2016, 55(3S1): 129209
24 Huang Y, Liu Y, Youssef K, et al. A solution processed flexible nanocomposite substrate with efficient light extraction via periodic wrinkles for white organic light-emitting diodes [J]. Adv. Opt. Mater., 2018, 6(23): 1801015
doi: 10.1002/adom.v6.23
25 Choi J, Shim Y S, Park C H, et al. Junction-free electrospun ag fiber electrodes for flexible organic light-emitting diodes [J]. Small, 2018, 14(7): 1702567
doi: 10.1002/smll.v14.7
26 Hippola C, Kaudal R, Manna E, et al. Enhanced light extraction from oleds fabricated on patterned plastic substrates [J]. Adv. Opt. Mater., 2018, 6(4): 1701244
doi: 10.1002/adom.v6.4
27 Liu S, Liu W, Yu J, et al. Silver/germanium/silver: An effective transparent electrode for flexible organic light-emitting devices [J]. J. Mater. Chem. C, 2014, 2(5): 835
doi: 10.1039/C3TC31927J
28 Wang Z B, Helander M G, Qiu J, et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic [J]. Nat. Photonics, 2011, 5(12): 753
doi: 10.1038/nphoton.2011.259
29 Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode [J]. Nat. Photonics, 2012, 6(2): 105
doi: 10.1038/nphoton.2011.318
30 Han T H, Park M H, Kwon S J, et al. Approaching ultimate flexible organic light-emitting diodes using a graphene anode [J]. NPG Asia Mater., 2016, 8: e303
doi: 10.1038/am.2016.108
31 Wu T L, Yeh C H, Hsiao W T, et al. High-performance organic light-emitting diode with substitutionally boron-doped graphene anode [J]. ACS Appl. Mater. Interfaces, 2017, 9(17): 14998
doi: 10.1021/acsami.7b03597
32 Zhang Z, Xia L, Liu L, et al. Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes [J]. J. Mater. Chem. C, 2021, 9(6): 2106
doi: 10.1039/D0TC05213B
33 Liu J, Li H L, Ma D G, et al. Efficient deep-blue electroluminescent devices based on a novel β-diketone zinc complex [J]. Inorg. Chim. Acta, 2022, 542: 121134
doi: 10.1016/j.ica.2022.121134
34 Mishra N, Forti S, Fabbri F, et al. Wafer-scale synthesis of graphene on sapphire: Toward fab-compatible graphene [J]. Small, 2019, 15(50): 1904906
doi: 10.1002/smll.v15.50
35 Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene [J]. Science, 2008, 320(5881): 1308
doi: 10.1126/science.1156965 pmid: 18388259
36 Chang H, Wang G, Yang A, et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode [J]. Adv. Funct. Mater., 2010, 20(17): 2893
doi: 10.1002/adfm.v20:17
37 Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures [J]. Adv. Mater., 2011, 23(13): 1482
doi: 10.1002/adma.v23.13
38 Jia S, Sun H D, Du J H, et al. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes [J]. Nanoscale, 2016, 8(20): 10714
doi: 10.1039/c6nr01649a pmid: 27153523
39 Weng Z, Dixon S C, Lee L Y, et al. Wafer‐scale graphene anodes replace indium tin oxide in organic light‐emitting diodes [J]. Adv. Opt. Mater., 2021, 10(3): 2101675
doi: 10.1002/adom.v10.3
40 Sharif P, Alemdar E, Ozturk S, et al. Rational molecular design enables efficient blue tadf-oleds with flexible graphene substrate [J]. Adv. Funct. Mater., 2022, 32(47): 2207324
doi: 10.1002/adfm.v32.47
41 Zhang Z K, Du J H, Zhang D D, et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes [J]. Nat. Commun., 2017, 8: 14560
doi: 10.1038/ncomms14560 pmid: 28233778
42 Strieth K F, James M J, Teders M, et al. Energy transfer catalysis mediated by visible light: Principles, applications, directions [J]. Chem. Soc. Rev., 2018, 47(19): 7190
doi: 10.1039/c8cs00054a pmid: 30088504
43 Chen Y, Zhao F, Zhao Y, et al. Ultra-simple hybrid white organic light-emitting diodes with high efficiency and cri trade-off: Fabrication and emission-mechanism analysis [J]. Org. Electron., 2012, 13(12): 2807
doi: 10.1016/j.orgel.2012.08.031
44 Zhu L, Xu K, Wang Y, et al. High efficiency yellow fluorescent organic light emitting diodes based on m-mtdata/bphen exciplex [J]. Front. Optoelectron., 2015, 8(4): 439
doi: 10.1007/s12200-015-0492-0
45 Hong K, Lee J L. Review paper: Recent developments in light extraction technologies of organic light emitting diodes [J]. Electron. Mater. Lett., 2011, 7(2): 77
doi: 10.1007/s13391-011-0601-1
[1] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] XU Dongwei, WANG Ruiqi, CHEN Ping. Research Progress of Graphene-based Absorbing Composites[J]. 材料研究学报, 2024, 38(1): 1-13.
[3] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[4] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[7] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[8] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[9] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[10] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[11] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[12] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[13] WANG Sheng, ZHOU Qiaoting, ZHAN Huimin, CHEN Jingjing. Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation[J]. 材料研究学报, 2023, 37(12): 943-951.
[14] WANG Yue, FU Boyan, CHEN Shuanglong, ZOU Binglin, WANG Chunjie. Thermophysical Properties of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) Nanomaterials for Thermal Barrier Coatings[J]. 材料研究学报, 2023, 37(11): 855-861.
[15] SUN Yuwei, CHEN Chou, QI Xin, REN Chuqi, TANG Qian, TENG Honghui, REN Baixiang. Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI)[J]. 材料研究学报, 2023, 37(11): 871-880.
No Suggested Reading articles found!