|
|
Crystal Plasticity Study on the Non-uniformity of Strain on the Cross-section of Cold Drawn Steel Wire |
ZHAO Yong1,2, LIU Tengyuan1,2, JIA Chunni1,2, YANG Zhendan1,2, CHEN Xiangjun1,2, WANG Pei1,2( ), LI Dianzhong1,2 |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
ZHAO Yong, LIU Tengyuan, JIA Chunni, YANG Zhendan, CHEN Xiangjun, WANG Pei, LI Dianzhong. Crystal Plasticity Study on the Non-uniformity of Strain on the Cross-section of Cold Drawn Steel Wire. Chinese Journal of Materials Research, 2024, 38(2): 81-91.
|
Abstract A macroscopic finite element model of multi-pass cold drawing coupled with a microscopic crystal plasticity finite element model of pearlite has been established in this study. The strain distribution and strain path of the cold drawn steel wire have been simulated, and the influence of them on the material strengthening have been analyzed. It is found that the plastic strain on the cross-section of the steel wire increases first and then decreases from the core to the surface after cold drawing. Meanwhile, the strain path in the core area of the steel wire is close to proportional loading, while the strain path near the surface is tortuous. The tortuous strain path can drive more slip systems to act, causing additional strengthening and ultimately increasing hardness. Under the comprehensive effect of the difference of strain and strain path in different areas of the cross-section, the subsurface hardness of the cold-drawn steel wire is the highest.
|
Received: 11 April 2023
|
|
Fund: National Natural Science Foundation of China(52031013) |
Corresponding Authors:
WANG Pei, Tel: (024)83970106, E-mail: pwang@imr.ac.cn
|
1 |
Tu Y Y. The microstructure and mechanical performance of high speed severe cold drawn steel wire [D]. Nanjing: Southeast University, 2006
|
|
涂益友. 高速大应变冷拔钢丝的组织和力学性能 [D]. 南京: 东南大学, 2006
|
2 |
Ma M G. Influence of drawing process and die on mechanical properties of steel wire [D]. Guiyang: Guizhou University, 2006
|
|
马明刚. 拉拔工艺及模具对钢丝力学性能的影响 [D]. 贵阳: 贵州大学, 2006
|
3 |
Nam W J, Bae C M. Void initiation and microstructural changes during wire drawing of pearlitic steels [J]. Mater. Sci. Eng., 1995, 203A(1-2) : 278
|
4 |
Borchers C, Kirchheim R. Cold-drawn pearlitic steel wires [J]. Prog. Mater. Sci., 2016, 82: 405
doi: 10.1016/j.pmatsci.2016.06.001
|
5 |
Qu X, Bao S Q, Zhao G, et al. Evolution of microstructure and properties for high carbon steel wire during drawing [J]. J. Mater. Sci. Eng., 2021, 39(6): 937
|
|
瞿 熙, 鲍思前, 赵 刚 等. 高碳钢丝拉拔过程中的组织性能演变 [J]. 材料科学与工程学报, 2021, 39(6): 937
|
6 |
Zhang X D, Godfrey A, Huang X X, et al. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire [J]. Acta Mater., 2011, 59(9): 3422
doi: 10.1016/j.actamat.2011.02.017
|
7 |
Liu Y D, Jiang Q W, Zhao X, et al. Texture analysis and simulation of pearltic wires during drawing [J]. Acta Metall. Sin., 2002, 38(11): 1215
|
|
刘沿东, 蒋奇武, 赵 骧 等. 拉拔过程中珠光体钢丝帘线的织构分析与模拟 [J]. 金属学报, 2002, 38(11): 1215
|
8 |
Zhang X D, Godfrey A, Liu W, et al. Evolutions of microstructure and ferritic micro-orientation and texture in a pearlitic steel wire during cold drawing [J]. Acta Metall. Sin., 2010, 46(2): 141
|
|
张晓丹, Godfrey A, 刘 伟 等. 珠光体钢丝冷拉拔过程中微观组织及铁素体微区取向与织构演变 [J]. 金属学报, 2010, 46(2):141
doi: 10.3724/SP.J.1037.2009.00247
|
9 |
Zhao T Z. Strain path effects on the pearlitic steel wire during cold drawing [D]. Beijing: University of Chinese Academy of Sciences, 2014
|
|
赵天章. 珠光体钢丝冷拉拔过程中应变路径效应的研究 [D]. 北京: 中国科学院大学, 2014
|
10 |
Celentano D J, Palacios M A, Rojas E L, et al. Simulation and experimental validation of multiple-step wire drawing processes [J]. Finite Elem. Anal. Des., 2009, 45(3): 163
doi: 10.1016/j.finel.2008.09.001
|
11 |
Toribio J, Lorenzo M, Vergara D. On the use of varying die angle for improving the resistance to hydrogen embrittlement of cold drawn prestressing steel wires [J]. Eng. Fail. Anal., 2015, 47: 273
doi: 10.1016/j.engfailanal.2014.09.007
|
12 |
Hwang J K, Yi I C, Son I H, et al. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing [J]. Mat. Sci. Eng., 2015, 644A: 41
|
13 |
Yang Z J, Wang K K, Yang Y. Optimization of steel wire drawing process based on deform and response surface methodology [J]. J. Nets. Form. Eng., 2019, 11(2): 9
|
|
杨祖建, 王开坤, 杨 艳. 基于Deform和响应曲面法的钢丝拉拔工艺优化 [J]. 精密成形工程, 2019, 11(2): 9
|
14 |
Zhao T Z, Zhang S H, Zhang L Y, et al. Numerical simulation on influence of residual stress on strength gradient in cold drawn steel wire [J]. J. Plast. Eng., 2016, 23(5): 96
|
|
赵天章, 张士宏, 张凌云 等. 残余应力影响冷拉拔钢丝强度梯度的数值仿真[J]. 塑性工程学报, 2016, 23(5): 96
|
15 |
Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications [J]. Acta Mater., 2010, 58(4): 1152
doi: 10.1016/j.actamat.2009.10.058
|
16 |
Jia C N. Mesoscopic modeling and simulation of microstructural evolution in Fe-C-Mn steels [D]. Hefei: University of Science and Technology of China, 2022
|
|
贾春妮. Fe-C-Mn合金微观组织行为的介观尺度建模与模拟 [D]. 合肥: 中国科学技术大学, 2022
|
17 |
Lu L, Wang Z X, Wang F Z, et al. Progress of microstructure evolution simulation in metal rolling process with plastic finite element method [J]. Mater. Rep., 2013, 27A(2) : 138
|
|
陆 璐, 王照旭, 王辅忠 等. 塑性有限元法在金属轧制过程中组织演化模拟进展 [J]. 材料导报, 2013, 27A(2) : 138
|
18 |
Ling B C. Simulation analysis on damage process and torsional performance improvement of ultra-high strength steel wire drawing process [D]. Nanjing: Southeast University, 2017
|
|
凌必超. 超高强度钢丝拉拔损伤过程模拟分析及扭转性能提升 [D]. 南京: 东南大学, 2017
|
19 |
Wang Q, Chen C, Li Z X, et al. Modeling of wire with flaw in multi-drawing and optimization of drawing technique [J]. Mech. Eng., 2009, 31(1): 28
|
|
王 珺, 陈 翠, 李兆霞 等. 含缺陷钢丝多道次拉拔模拟及工艺参数优化 [J]. 力学与实践, 2009, 31(1): 28
|
20 |
Zhang L, Zhang G Z, Liu H F. Study on microstructure and properties of medium carbon steel wire drawing process [J]. Met. Prod., 2020, 46(1): 14
|
|
张 伦, 张国珍, 刘红芳. 中碳钢丝拉拔过程组织与性能研究 [J]. 金属制品, 2020, 46(1): 14
|
21 |
Jiang K C. Wire Drawing Technique [M]. Beijing: Light Industry Press, 1982
|
|
蒋克昌. 钢丝拉拔技术 [M]. 北京: 轻工业出版社, 1982
|
22 |
Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations [J]. Int. J. Plast., 2019, 119: 249
doi: 10.1016/j.ijplas.2019.04.009
|
23 |
Zhang X D, Godfrey A, Hansen N, et al. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing [J]. Mater. Charact., 2010, 61(1): 65
doi: 10.1016/j.matchar.2009.10.007
|
24 |
Franciosi P, Le L T, Monnet G, et al. Investigation of slip system activity in iron at room temperature by SEM and AFM in-situ tensile and compression tests of iron single crystals [J]. Int. J. Plast., 2015, 65: 226
doi: 10.1016/j.ijplas.2014.09.008
|
25 |
Kumar P, Gurao N P, Haldar A, et al. Progressive changes in the microstructure and texture in pearlitic steel during wire drawing [J]. ISIJ Int., 2011, 51(4): 679
doi: 10.2355/isijinternational.51.679
|
26 |
Watanabe R. Possible slip systems in body centered cubic iron [J]. Mater. Trans., 2006, 47(8): 1886
doi: 10.2320/matertrans.47.1886
|
27 |
Min K M, Jeong W, Hong S H, et al. Integrated crystal plasticity and phase field model for prediction of recrystallization texture and anisotropic mechanical properties of cold-rolled ultra-low carbon steels [J]. Int. J. Plast., 2020, 127: 102644
doi: 10.1016/j.ijplas.2019.102644
|
28 |
Pokharel R, Patra A, Brown D W, et al. An analysis of phase stresses in additively manufactured 304L stainless steel using neutron diffraction measurements and crystal plasticity finite element simulations [J]. Int. J. Plast., 2019, 121: 201
doi: 10.1016/j.ijplas.2019.06.005
|
29 |
Sun F W, Meade E D, O'dowd N P. Strain gradient crystal plasticity modelling of size effects in a hierarchical martensitic steel using the Voronoi tessellation method [J]. Int. J. Plast., 2019, 119: 215
doi: 10.1016/j.ijplas.2019.03.009
|
30 |
Huang X T, Wang J J, Zhao S X, et al. High-resolution multiscale modeling of mechanical behavior of cold-drawn pearlitic steels [J]. J. Mater. Res. Technol., 2021, 15: 5920
doi: 10.1016/j.jmrt.2021.10.087
|
31 |
Zhao J W, Jiang Z Y, Wang Z H, et al. An analysis of micro deep drawing of ferritic stainless steel 430 using crystal plasticity finite element method [J]. J. Mater. Res. Technol., 2022, 20: 2247
doi: 10.1016/j.jmrt.2022.07.105
|
32 |
Zheng Z B, Zhao P D, Zhan M, et al. The roles of rise and fall time in load shedding and strain partitioning under the dwell fatigue of titanium alloys with different microstructures [J]. Int. J. Plast., 2022, 149: 103161
doi: 10.1016/j.ijplas.2021.103161
|
33 |
Zhang W T, Jiang R, Zhao Y, et al. Effects of temperature and microstructure on low cycle fatigue behaviour of a PM Ni-based superalloy: EBSD assessment and crystal plasticity simulation [J]. Int. J. Fatigue, 2022, 159: 106818
doi: 10.1016/j.ijfatigue.2022.106818
|
34 |
Schmitt J H, Shen E L, Raphanel J L. A parameter for measuring the magnitude of a change of strain path: validation and comparison with experiments on low carbon steel [J]. Int. J. Plast., 1994, 10(5): 535
doi: 10.1016/0749-6419(94)90013-2
|
35 |
Su H Y. The effect of annealing process on the microstructures and properties of 2000 MPa cold-drawn steel wire [J]. Iron Steel Van. Tit., 2022, 43(2): 172
|
|
苏红艳. 退火工艺对2000 MPa级冷拉钢丝组织和性能的影响 [J]. 钢铁钒钛, 2022, 43(2): 172
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|