Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (2): 81-91    DOI: 10.11901/1005.3093.2023.221
ARTICLES Current Issue | Archive | Adv Search |
Crystal Plasticity Study on the Non-uniformity of Strain on the Cross-section of Cold Drawn Steel Wire
ZHAO Yong1,2, LIU Tengyuan1,2, JIA Chunni1,2, YANG Zhendan1,2, CHEN Xiangjun1,2, WANG Pei1,2(), LI Dianzhong1,2
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

ZHAO Yong, LIU Tengyuan, JIA Chunni, YANG Zhendan, CHEN Xiangjun, WANG Pei, LI Dianzhong. Crystal Plasticity Study on the Non-uniformity of Strain on the Cross-section of Cold Drawn Steel Wire. Chinese Journal of Materials Research, 2024, 38(2): 81-91.

Download:  HTML  PDF(4897KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A macroscopic finite element model of multi-pass cold drawing coupled with a microscopic crystal plasticity finite element model of pearlite has been established in this study. The strain distribution and strain path of the cold drawn steel wire have been simulated, and the influence of them on the material strengthening have been analyzed. It is found that the plastic strain on the cross-section of the steel wire increases first and then decreases from the core to the surface after cold drawing. Meanwhile, the strain path in the core area of the steel wire is close to proportional loading, while the strain path near the surface is tortuous. The tortuous strain path can drive more slip systems to act, causing additional strengthening and ultimately increasing hardness. Under the comprehensive effect of the difference of strain and strain path in different areas of the cross-section, the subsurface hardness of the cold-drawn steel wire is the highest.

Key words:  synthesizing and processing technics for materials      non-uniformity of strain      crystal plasticity finite element method      cold drawn steel wire      strain path     
Received:  11 April 2023     
ZTFLH:  TG356.4+6  
Fund: National Natural Science Foundation of China(52031013)
Corresponding Authors:  WANG Pei, Tel: (024)83970106, E-mail: pwang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.221     OR     https://www.cjmr.org/EN/Y2024/V38/I2/81

Passes0123456
Diameter / mm10.09.07.97.06.25.65.1
Reduction ratio-19%23%22%22%18%17%
Average strain-0.210.260.240.240.200.19
Table 1  Drawing process parameters
Fig.1  A two-dimensional axisymmetric model for drawing (a) initial state, (b) deformation process of steel wire
Fig.2  Engineering stress-strain curves with good agreement through the reverse method (a), and true stress-strain curve of the material used for simulation (b)
Fig.3  2D pearlite colony RVE model (a) and experimental and simulated true stress-strain curves (b)
ParameterSymbolValue
Elastic moduliC11197000 MPa
C12134000 MPa
C44105000 MPa
Rate sensitivity parametern10 [27]
Reference strain ratea˙8.74 × 10-4 s-1
Burgers vectorb2.48 × 10-7 mm [28,29]
Dislocation densitygminter0.6
evolution coefficientgimmob0.035
grecov80
gsour10-5
Initial dislocation densityρim0240000 mm-2
ρm0240000 mm-2
Static yield stressτy120 MPa [30,31]
Shear moduliG115022 MPa
Interaction coefficientaαα0.8
aαβ0.6
Table 2  Parameters required for crystal plasticity calculation of equivalent pearlite material
Fig.4  Distribution of axial and radial strains on the cross-section of steel wire after drawing (a) and distribution of equivalent strain on the cross-section of steel wire after drawing and selection of microscopic model calculation points (b)
Fig.5  Strain path diagrams of surface and center in steel wire obtained from drawing simulation (a) and time dependent curves of axial and radial strain of surface in steel wire obtained from drawing simulation (b)
Fig.6  Average of two values in RVE of six positions at end time of drawing (a) total cumulative shear strain (γ) on all slip systems, (b) total density of immobile dislocation (IMDD) on all slip systems
Fig.7  Measurement results of Vickers hardness on the cross-section of steel wire
Fig.8  Average von Mises stress over time in micro zone A (a) and comparison of peak von Mises stress at various points in the first pass (b)
Fig.9  Distribution of slip system motion at end of first pass for RVE model corresponding to four points (a) points A and E, (b) points B and D
Fig.10  Schematic diagram of selecting typical grain
NumberModel AModel E
828%0
944%0
1016%22%
114%61%
129%16%
Table 3  Distribution of numbers of activated slip systems on representative grains in models A and E
Fig.11  Microscopic response on representative grains at the end of the first pass (a) total cumulative shear strain at point A, (b) total cumulative shear strain at point E, (c) total density of immobile dislocation at point A, and (d) total density of immobile dislocation at point E
Fig.12  Variation of average strength of slip systems on representative grains at points A and E
1 Tu Y Y. The microstructure and mechanical performance of high speed severe cold drawn steel wire [D]. Nanjing: Southeast University, 2006
涂益友. 高速大应变冷拔钢丝的组织和力学性能 [D]. 南京: 东南大学, 2006
2 Ma M G. Influence of drawing process and die on mechanical properties of steel wire [D]. Guiyang: Guizhou University, 2006
马明刚. 拉拔工艺及模具对钢丝力学性能的影响 [D]. 贵阳: 贵州大学, 2006
3 Nam W J, Bae C M. Void initiation and microstructural changes during wire drawing of pearlitic steels [J]. Mater. Sci. Eng., 1995, 203A(1-2) : 278
4 Borchers C, Kirchheim R. Cold-drawn pearlitic steel wires [J]. Prog. Mater. Sci., 2016, 82: 405
doi: 10.1016/j.pmatsci.2016.06.001
5 Qu X, Bao S Q, Zhao G, et al. Evolution of microstructure and properties for high carbon steel wire during drawing [J]. J. Mater. Sci. Eng., 2021, 39(6): 937
瞿 熙, 鲍思前, 赵 刚 等. 高碳钢丝拉拔过程中的组织性能演变 [J]. 材料科学与工程学报, 2021, 39(6): 937
6 Zhang X D, Godfrey A, Huang X X, et al. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire [J]. Acta Mater., 2011, 59(9): 3422
doi: 10.1016/j.actamat.2011.02.017
7 Liu Y D, Jiang Q W, Zhao X, et al. Texture analysis and simulation of pearltic wires during drawing [J]. Acta Metall. Sin., 2002, 38(11): 1215
刘沿东, 蒋奇武, 赵 骧 等. 拉拔过程中珠光体钢丝帘线的织构分析与模拟 [J]. 金属学报, 2002, 38(11): 1215
8 Zhang X D, Godfrey A, Liu W, et al. Evolutions of microstructure and ferritic micro-orientation and texture in a pearlitic steel wire during cold drawing [J]. Acta Metall. Sin., 2010, 46(2): 141
张晓丹, Godfrey A, 刘 伟 等. 珠光体钢丝冷拉拔过程中微观组织及铁素体微区取向与织构演变 [J]. 金属学报, 2010, 46(2):141
doi: 10.3724/SP.J.1037.2009.00247
9 Zhao T Z. Strain path effects on the pearlitic steel wire during cold drawing [D]. Beijing: University of Chinese Academy of Sciences, 2014
赵天章. 珠光体钢丝冷拉拔过程中应变路径效应的研究 [D]. 北京: 中国科学院大学, 2014
10 Celentano D J, Palacios M A, Rojas E L, et al. Simulation and experimental validation of multiple-step wire drawing processes [J]. Finite Elem. Anal. Des., 2009, 45(3): 163
doi: 10.1016/j.finel.2008.09.001
11 Toribio J, Lorenzo M, Vergara D. On the use of varying die angle for improving the resistance to hydrogen embrittlement of cold drawn prestressing steel wires [J]. Eng. Fail. Anal., 2015, 47: 273
doi: 10.1016/j.engfailanal.2014.09.007
12 Hwang J K, Yi I C, Son I H, et al. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing [J]. Mat. Sci. Eng., 2015, 644A: 41
13 Yang Z J, Wang K K, Yang Y. Optimization of steel wire drawing process based on deform and response surface methodology [J]. J. Nets. Form. Eng., 2019, 11(2): 9
杨祖建, 王开坤, 杨 艳. 基于Deform和响应曲面法的钢丝拉拔工艺优化 [J]. 精密成形工程, 2019, 11(2): 9
14 Zhao T Z, Zhang S H, Zhang L Y, et al. Numerical simulation on influence of residual stress on strength gradient in cold drawn steel wire [J]. J. Plast. Eng., 2016, 23(5): 96
赵天章, 张士宏, 张凌云 等. 残余应力影响冷拉拔钢丝强度梯度的数值仿真[J]. 塑性工程学报, 2016, 23(5): 96
15 Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications [J]. Acta Mater., 2010, 58(4): 1152
doi: 10.1016/j.actamat.2009.10.058
16 Jia C N. Mesoscopic modeling and simulation of microstructural evolution in Fe-C-Mn steels [D]. Hefei: University of Science and Technology of China, 2022
贾春妮. Fe-C-Mn合金微观组织行为的介观尺度建模与模拟 [D]. 合肥: 中国科学技术大学, 2022
17 Lu L, Wang Z X, Wang F Z, et al. Progress of microstructure evolution simulation in metal rolling process with plastic finite element method [J]. Mater. Rep., 2013, 27A(2) : 138
陆 璐, 王照旭, 王辅忠 等. 塑性有限元法在金属轧制过程中组织演化模拟进展 [J]. 材料导报, 2013, 27A(2) : 138
18 Ling B C. Simulation analysis on damage process and torsional performance improvement of ultra-high strength steel wire drawing process [D]. Nanjing: Southeast University, 2017
凌必超. 超高强度钢丝拉拔损伤过程模拟分析及扭转性能提升 [D]. 南京: 东南大学, 2017
19 Wang Q, Chen C, Li Z X, et al. Modeling of wire with flaw in multi-drawing and optimization of drawing technique [J]. Mech. Eng., 2009, 31(1): 28
王 珺, 陈 翠, 李兆霞 等. 含缺陷钢丝多道次拉拔模拟及工艺参数优化 [J]. 力学与实践, 2009, 31(1): 28
20 Zhang L, Zhang G Z, Liu H F. Study on microstructure and properties of medium carbon steel wire drawing process [J]. Met. Prod., 2020, 46(1): 14
张 伦, 张国珍, 刘红芳. 中碳钢丝拉拔过程组织与性能研究 [J]. 金属制品, 2020, 46(1): 14
21 Jiang K C. Wire Drawing Technique [M]. Beijing: Light Industry Press, 1982
蒋克昌. 钢丝拉拔技术 [M]. 北京: 轻工业出版社, 1982
22 Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations [J]. Int. J. Plast., 2019, 119: 249
doi: 10.1016/j.ijplas.2019.04.009
23 Zhang X D, Godfrey A, Hansen N, et al. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing [J]. Mater. Charact., 2010, 61(1): 65
doi: 10.1016/j.matchar.2009.10.007
24 Franciosi P, Le L T, Monnet G, et al. Investigation of slip system activity in iron at room temperature by SEM and AFM in-situ tensile and compression tests of iron single crystals [J]. Int. J. Plast., 2015, 65: 226
doi: 10.1016/j.ijplas.2014.09.008
25 Kumar P, Gurao N P, Haldar A, et al. Progressive changes in the microstructure and texture in pearlitic steel during wire drawing [J]. ISIJ Int., 2011, 51(4): 679
doi: 10.2355/isijinternational.51.679
26 Watanabe R. Possible slip systems in body centered cubic iron [J]. Mater. Trans., 2006, 47(8): 1886
doi: 10.2320/matertrans.47.1886
27 Min K M, Jeong W, Hong S H, et al. Integrated crystal plasticity and phase field model for prediction of recrystallization texture and anisotropic mechanical properties of cold-rolled ultra-low carbon steels [J]. Int. J. Plast., 2020, 127: 102644
doi: 10.1016/j.ijplas.2019.102644
28 Pokharel R, Patra A, Brown D W, et al. An analysis of phase stresses in additively manufactured 304L stainless steel using neutron diffraction measurements and crystal plasticity finite element simulations [J]. Int. J. Plast., 2019, 121: 201
doi: 10.1016/j.ijplas.2019.06.005
29 Sun F W, Meade E D, O'dowd N P. Strain gradient crystal plasticity modelling of size effects in a hierarchical martensitic steel using the Voronoi tessellation method [J]. Int. J. Plast., 2019, 119: 215
doi: 10.1016/j.ijplas.2019.03.009
30 Huang X T, Wang J J, Zhao S X, et al. High-resolution multiscale modeling of mechanical behavior of cold-drawn pearlitic steels [J]. J. Mater. Res. Technol., 2021, 15: 5920
doi: 10.1016/j.jmrt.2021.10.087
31 Zhao J W, Jiang Z Y, Wang Z H, et al. An analysis of micro deep drawing of ferritic stainless steel 430 using crystal plasticity finite element method [J]. J. Mater. Res. Technol., 2022, 20: 2247
doi: 10.1016/j.jmrt.2022.07.105
32 Zheng Z B, Zhao P D, Zhan M, et al. The roles of rise and fall time in load shedding and strain partitioning under the dwell fatigue of titanium alloys with different microstructures [J]. Int. J. Plast., 2022, 149: 103161
doi: 10.1016/j.ijplas.2021.103161
33 Zhang W T, Jiang R, Zhao Y, et al. Effects of temperature and microstructure on low cycle fatigue behaviour of a PM Ni-based superalloy: EBSD assessment and crystal plasticity simulation [J]. Int. J. Fatigue, 2022, 159: 106818
doi: 10.1016/j.ijfatigue.2022.106818
34 Schmitt J H, Shen E L, Raphanel J L. A parameter for measuring the magnitude of a change of strain path: validation and comparison with experiments on low carbon steel [J]. Int. J. Plast., 1994, 10(5): 535
doi: 10.1016/0749-6419(94)90013-2
35 Su H Y. The effect of annealing process on the microstructures and properties of 2000 MPa cold-drawn steel wire [J]. Iron Steel Van. Tit., 2022, 43(2): 172
苏红艳. 退火工艺对2000 MPa级冷拉钢丝组织和性能的影响 [J]. 钢铁钒钛, 2022, 43(2): 172
[1] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[2] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[3] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[4] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[5] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[6] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[7] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[8] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[9] SHEN Yinan CHEN Huahui HU Yu. The grain composition’s influence on the performance of the porous ceramic[J]. 材料研究学报, 2011, 25(5): 550-556.
No Suggested Reading articles found!