Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (6): 401-407    DOI: 10.11901/1005.3093.2022.337
ARTICLES Current Issue | Archive | Adv Search |
Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds
ZHANG Tengxin1,2, WANG Han1(), HAO Yabin1,2, ZHANG Jiangang1,2, SUN Xinyang1,2, ZENG You1,2()
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds. Chinese Journal of Materials Research, 2023, 37(6): 401-407.

Download:  HTML  PDF(2927KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Developing advanced composites with high strength and high vibration damping is extremely important for ensuring high safety and reliability of composites in high-frequency-vibration circumstances. In this paper, we proposed a novel strategy to remarkably enhance the damping property of composites by introducing reversible hydrogen bonds at the interfaces of graphene/polymer composites. Graphene and poly(styrene-ethylene-butadiene-styrene) (SEBS) were chemically modified to graft hydrogen bonding moiety, consequently forming multiple hydrogen-bonding networks at interfaces of graphene/SEBS composites. The cyclic tensile behavior and dynamic mechanical properties of the composites were investigated in detail. The results showed that the mechanical and damping properties of graphene/SEBS composites were greatly improved by introducing graphene and interfacial hydrogen-bonding structures. The elastic modulus, hysteresis loss, and damping ratio of the graphene/SEBS composites were increased by 165%, 237% and 42% in comparison with that of SEBS. Such remarkable enhancement in both mechanical and damping properties is mainly attributed to the interfacial hydrogen bonds between components, high-efficiency stress-transferring, and significant energy dissipation resulted from reversible breaking/formation of hydrogen bonds during cyclic deformation.

Key words:  composites      damping properties      interfacial hydrogen bonds      graphene      mechanical strength     
Received:  20 June 2022     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(52130209);National Natural Science Foundation of China(51802317);Liaoning Natural Science Foundation(2019JH3/30100008);Opening Foundation of Shanxi Key Laboratory of Nano & Functional Composite Materials(NFCM202102);IMR Innovation Fund(2022-PY07);Shenyang National Laboratory for Materials Science(2021-FP31)
Corresponding Authors:  ZENG You, Tel:(024)83978090, E-mail: yzeng@imr.ac.cn;
WANG Han, Tel:(024)83978090, E-mail: hanwang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.337     OR     https://www.cjmr.org/EN/Y2023/V37/I6/401

Fig.1  Schematics of interfacial hydrogen bonds in Gr/SEBS composites (a) ATA-grafted SEBS, (b) ATA-modified graphene, and (c) the interfacial hydrogen bonds between components
Fig.2  Infrared spectra of the GO, m-Gr, SEBS, m-SEBS, and Gr/SEBS composites (a) and In-situ infrared spectra (b) of Gr/SEBS composites at variable temperatures
Fig.3  Cyclic tensile mechanical behavior of Gr/SEBS composites (a) cyclic tensile stress-strain curve, (b) tensile modulus, (c) tensile stress at 400% strain, and (d) hysteresis loss
Fig.4  Dynamic mechanical analyses of Gr/SEBS composites (a) storage modulus, (b) loss modulus, (c) tanδ, and (d) the storage modulus and damping ratio against graphene loadings
1 Zhou X Q, Yu D Y, Shao X Y, et al. Research and applications of viscoelastic vibration damping materials: A review [J]. Compos. Struct., 2016, 136: 460
doi: 10.1016/j.compstruct.2015.10.014
2 Zeng Y, Ci L J, Carey B J, et al. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites [J]. ACS Nano, 2010, 4(11): 6798
doi: 10.1021/nn101650p pmid: 20958076
3 Wang H, Ma C Q, Zhang W M, et al. Improved damping and high strength of graphene-coated nickel hybrid foams [J]. ACS Appl. Mater. Inter., 2019, 11(45): 42690
doi: 10.1021/acsami.9b10382
4 Zhao J N, Wang F L, Zhang X, et al. Vibration damping of carbon nanotube assembly materials [J]. Adv. Eng. Mater., 2018, 20(3): 1700647
doi: 10.1002/adem.v20.3
5 Meaud J, Sain T, Yeom B, et al. Simultaneously high stiffness and damping in nanoengineered microtruss composites [J]. ACS Nano, 2014, 8(4): 3468
doi: 10.1021/nn500284m pmid: 24620996
6 Zhang F Q, Wang W, Sun G, et al. Preparation of Y2O3 hollow spheres and low frequency damping poperties of rubber composite reinforced with Y2O3 hollow spheres [J]. Chin. J. Mater. Res., 2015, 29(7): 505
张富青, 王 维, 孙 刚 等. 氧化钇空心微球的制备及其复合橡胶的低频阻尼性能 [J]. 材料研究学报, 2015, 29(7): 505
7 Papageorgiou D G, Kinloch I A, Young R J. Mechanical properties of graphene and graphene-based nanocomposites [J]. Prog. Mater. Sci., 2017, 90: 75
doi: 10.1016/j.pmatsci.2017.07.004
8 Zeng Y, Wang H. Viscoelastic damping of nanocarbon/epoxy composites [J]. Chinese Sci. Bull., 2014, 59(33): 3232
9 Gardea F, Glaz B, Riddick J, et al. Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes [J]. ACS Appl. Mater. Inter., 2015, 7(18): 9725
doi: 10.1021/acsami.5b01459
10 Liu A L, Wang K W, Bakis C E. Effect of functionalization of single-wall carbon nanotubes (SWNTs) on the damping characteristics of SWNT-based epoxy composites via multiscale analysis [J]. Compos. Part A-Appl. S., 2011, 42(11): 1748
doi: 10.1016/j.compositesa.2011.07.030
11 Pokharel P, Pant B, Pokhrel K, et al. Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites [J]. Compos. Part B-Eng., 2015, 78: 192
doi: 10.1016/j.compositesb.2015.03.089
12 Lu W J, Qin F X, Wang Y F, et al. Engineering graphene wrinkles for large enhancement of interlaminar friction enabled damping capability [J]. ACS Appl. Mater. Inter., 2019, 11(33): 30278
doi: 10.1021/acsami.9b09393
13 Li C J, Wang Y J, Yuan Z, et al. Construction of sacrificial bonds and hybrid networks in EPDM rubber towards mechanical performance enhancement [J]. Appl. Surf. Sci., 2019, 484: 616
doi: 10.1016/j.apsusc.2019.04.064
14 Gasperini A, Wang G J N, Molina-Lopez F, et al. Characterization of hydrogen bonding formation and breaking in semiconducting polymers under mechanical strain [J]. Macromolecules, 2019, 52(6): 2476
doi: 10.1021/acs.macromol.9b00145
15 Campanella A, Dohler D, Binder W H. Self-healing in supramolecular polymers [J]. Macromol. Rapid Comm., 2018, 39(17): 1700739
doi: 10.1002/marc.201700739
16 Shao C Y, Chang H L, Wang M, et al. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds [J]. ACS Appl. Mater. Inter., 2017, 9(34): 28305
doi: 10.1021/acsami.7b09614
17 Lee D W, Hong T K, Kang D, et al. Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides [J]. J. Mater. Chem., 2011, 21(10): 3438
doi: 10.1039/C0JM02270E
18 Che J F, Shen L Y, Xiao Y H. A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion [J]. J. Mater. Chem., 2010, 20(9): 1722
doi: 10.1039/b922667b
19 Zhang J L, Yang H J, Shen G X, et al. Reduction of graphene oxide via L-ascorbic acid [J]. Chem. Commun., 2010, 46(7): 1112
doi: 10.1039/B917705A
20 Park H S, Hong C K. Anion exchange membrane based on sulfonated poly (styrene-ethylene-butylene-styrene) copolymers [J]. Polymers-Basel, 2021, 13(10): 1669
21 Liu J, Wang S, Tang Z H, et al. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer [J]. Macromolecules, 2016, 49(22): 8593
doi: 10.1021/acs.macromol.6b01576
22 Wang J F, Jin X X, Zhang X M, et al. Effect of tunable styrene content on achieving high-performance poly(styrene-b-ethylene-ran-butylene-b-styrene)/graphene oxide nanocomposites [J]. Compos. Sci. Technol., 2018, 164: 229
doi: 10.1016/j.compscitech.2018.05.041
23 Clark D C, Baker W E, Whitney R A. Peroxide-initiated comonomer grafting of styrene and maleic anhydride onto polyethylene: Effect of polyethylene microstructure [J]. J. Appl. Polym. Sci., 2001, 79(1): 96
doi: 10.1002/(ISSN)1097-4628
24 Chino K, Ashiura M. Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks [J]. Macromolecules, 2001, 34(26): 9201
doi: 10.1021/ma011253v
25 Zhan Y Q, Yang X L, Guo H, et al. Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability [J]. J. Mater. Chem., 2012, 22(12): 5602
doi: 10.1039/c2jm15780b
26 Tetsuka H, Asahi R, Nagoya A, et al. Optically tunable amino-functionalized graphene quantum dots [J]. Adv. Mater., 2012, 24(39): 5333
doi: 10.1002/adma.201201930
27 Mei J, Liu W F, Huang J H, et al. Lignin-reinforced ethylene-propylene-diene copolymer elastomer via hydrogen bonding interactions [J]. Macromol. Mater. Eng., 2019, 304(4): 1800689
doi: 10.1002/mame.v304.4
28 Zeng S J, Ye L, Yan S J, et al. Amphibious hybrid nanostructured proton exchange membranes [J]. J. Membrane Sci., 2011, 367(1-2): 78
doi: 10.1016/j.memsci.2010.10.041
29 Zhan Y Q, Yang X L, Guo H, et al. Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability [J]. J. Mater. Chem., 2012, 22(12): 5602
doi: 10.1039/c2jm15780b
30 Kim N H, Kuila T, Lee J H. Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application [J]. J. Mater. Chem. A, 2013, 1(4): 1349
doi: 10.1039/C2TA00853J
31 Xu K M, Zhang F S, Zhang X L, et al. Molecular insights into hydrogen bonds in polyurethane/hindered phenol hybrids: evolution and relationship with damping properties [J]. J. Mater. Chem. A, 2014, 2(22): 8545
doi: 10.1039/C4TA00476K
32 Wang W Y, Liu Y M, Jin X, et al. Effect of polypyrrole modified carbon fiber on interfacial property of composite PPy-carbon fiber/epoxy [J]. Chin. J. Mater. Res, 2017, 32(3): 209
王闻宇, 刘亚敏, 金 欣 等. 聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度 [J]. 材料研究学报, 2018, 32(3): 209
doi: 10.11901/1005.3093.2017.422
33 Li C J, Yuan Z, Ye L. Fcile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate (ZDMA) rubber composites: highly reinforcing effect and improvement mechanism of sealing resilience [J]. Compos. Part A-Appl. S., 2019, 126: 105580
doi: 10.1016/j.compositesa.2019.105580
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Chunjin, CHEN Wenge, KANG Ningning, YANG Tao. Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing[J]. 材料研究学报, 2023, 37(10): 791-800.
[8] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[9] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[10] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[11] HUANG Huan, ZHANG Xuntao, YANG Shangke, XIAO Liuxin, ZHANG Zhaoxin, YAN Lei, LIN Hailan, BIAN Jun, CHEN Daiqiang. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent[J]. 材料研究学报, 2022, 36(6): 416-424.
[12] LIU Jialiang, XU Dongwei, CHEN Ping. Preparation and Microwave Absorption Properties of Magnetic Porous rGO@Co/CoO Composites[J]. 材料研究学报, 2022, 36(5): 332-342.
[13] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[14] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[15] ZENG Qiang, WANG Rongchao, LIU Qi, PENG Huanan, CHEN Ping. Properties of Epoxy Resin Based Composite Incorporated with Magnetically Functionalized Reduction Graphene Oxide[J]. 材料研究学报, 2022, 36(12): 881-886.
No Suggested Reading articles found!