|
|
Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds |
ZHANG Tengxin1,2, WANG Han1( ), HAO Yabin1,2, ZHANG Jiangang1,2, SUN Xinyang1,2, ZENG You1,2( ) |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds. Chinese Journal of Materials Research, 2023, 37(6): 401-407.
|
Abstract Developing advanced composites with high strength and high vibration damping is extremely important for ensuring high safety and reliability of composites in high-frequency-vibration circumstances. In this paper, we proposed a novel strategy to remarkably enhance the damping property of composites by introducing reversible hydrogen bonds at the interfaces of graphene/polymer composites. Graphene and poly(styrene-ethylene-butadiene-styrene) (SEBS) were chemically modified to graft hydrogen bonding moiety, consequently forming multiple hydrogen-bonding networks at interfaces of graphene/SEBS composites. The cyclic tensile behavior and dynamic mechanical properties of the composites were investigated in detail. The results showed that the mechanical and damping properties of graphene/SEBS composites were greatly improved by introducing graphene and interfacial hydrogen-bonding structures. The elastic modulus, hysteresis loss, and damping ratio of the graphene/SEBS composites were increased by 165%, 237% and 42% in comparison with that of SEBS. Such remarkable enhancement in both mechanical and damping properties is mainly attributed to the interfacial hydrogen bonds between components, high-efficiency stress-transferring, and significant energy dissipation resulted from reversible breaking/formation of hydrogen bonds during cyclic deformation.
|
Received: 20 June 2022
|
|
Fund: National Natural Science Foundation of China(52130209);National Natural Science Foundation of China(51802317);Liaoning Natural Science Foundation(2019JH3/30100008);Opening Foundation of Shanxi Key Laboratory of Nano & Functional Composite Materials(NFCM202102);IMR Innovation Fund(2022-PY07);Shenyang National Laboratory for Materials Science(2021-FP31) |
Corresponding Authors:
ZENG You, Tel:(024)83978090, E-mail: yzeng@imr.ac.cn;
WANG Han, Tel:(024)83978090, E-mail: hanwang@imr.ac.cn
|
1 |
Zhou X Q, Yu D Y, Shao X Y, et al. Research and applications of viscoelastic vibration damping materials: A review [J]. Compos. Struct., 2016, 136: 460
doi: 10.1016/j.compstruct.2015.10.014
|
2 |
Zeng Y, Ci L J, Carey B J, et al. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites [J]. ACS Nano, 2010, 4(11): 6798
doi: 10.1021/nn101650p
pmid: 20958076
|
3 |
Wang H, Ma C Q, Zhang W M, et al. Improved damping and high strength of graphene-coated nickel hybrid foams [J]. ACS Appl. Mater. Inter., 2019, 11(45): 42690
doi: 10.1021/acsami.9b10382
|
4 |
Zhao J N, Wang F L, Zhang X, et al. Vibration damping of carbon nanotube assembly materials [J]. Adv. Eng. Mater., 2018, 20(3): 1700647
doi: 10.1002/adem.v20.3
|
5 |
Meaud J, Sain T, Yeom B, et al. Simultaneously high stiffness and damping in nanoengineered microtruss composites [J]. ACS Nano, 2014, 8(4): 3468
doi: 10.1021/nn500284m
pmid: 24620996
|
6 |
Zhang F Q, Wang W, Sun G, et al. Preparation of Y2O3 hollow spheres and low frequency damping poperties of rubber composite reinforced with Y2O3 hollow spheres [J]. Chin. J. Mater. Res., 2015, 29(7): 505
|
|
张富青, 王 维, 孙 刚 等. 氧化钇空心微球的制备及其复合橡胶的低频阻尼性能 [J]. 材料研究学报, 2015, 29(7): 505
|
7 |
Papageorgiou D G, Kinloch I A, Young R J. Mechanical properties of graphene and graphene-based nanocomposites [J]. Prog. Mater. Sci., 2017, 90: 75
doi: 10.1016/j.pmatsci.2017.07.004
|
8 |
Zeng Y, Wang H. Viscoelastic damping of nanocarbon/epoxy composites [J]. Chinese Sci. Bull., 2014, 59(33): 3232
|
9 |
Gardea F, Glaz B, Riddick J, et al. Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes [J]. ACS Appl. Mater. Inter., 2015, 7(18): 9725
doi: 10.1021/acsami.5b01459
|
10 |
Liu A L, Wang K W, Bakis C E. Effect of functionalization of single-wall carbon nanotubes (SWNTs) on the damping characteristics of SWNT-based epoxy composites via multiscale analysis [J]. Compos. Part A-Appl. S., 2011, 42(11): 1748
doi: 10.1016/j.compositesa.2011.07.030
|
11 |
Pokharel P, Pant B, Pokhrel K, et al. Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites [J]. Compos. Part B-Eng., 2015, 78: 192
doi: 10.1016/j.compositesb.2015.03.089
|
12 |
Lu W J, Qin F X, Wang Y F, et al. Engineering graphene wrinkles for large enhancement of interlaminar friction enabled damping capability [J]. ACS Appl. Mater. Inter., 2019, 11(33): 30278
doi: 10.1021/acsami.9b09393
|
13 |
Li C J, Wang Y J, Yuan Z, et al. Construction of sacrificial bonds and hybrid networks in EPDM rubber towards mechanical performance enhancement [J]. Appl. Surf. Sci., 2019, 484: 616
doi: 10.1016/j.apsusc.2019.04.064
|
14 |
Gasperini A, Wang G J N, Molina-Lopez F, et al. Characterization of hydrogen bonding formation and breaking in semiconducting polymers under mechanical strain [J]. Macromolecules, 2019, 52(6): 2476
doi: 10.1021/acs.macromol.9b00145
|
15 |
Campanella A, Dohler D, Binder W H. Self-healing in supramolecular polymers [J]. Macromol. Rapid Comm., 2018, 39(17): 1700739
doi: 10.1002/marc.201700739
|
16 |
Shao C Y, Chang H L, Wang M, et al. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds [J]. ACS Appl. Mater. Inter., 2017, 9(34): 28305
doi: 10.1021/acsami.7b09614
|
17 |
Lee D W, Hong T K, Kang D, et al. Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides [J]. J. Mater. Chem., 2011, 21(10): 3438
doi: 10.1039/C0JM02270E
|
18 |
Che J F, Shen L Y, Xiao Y H. A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion [J]. J. Mater. Chem., 2010, 20(9): 1722
doi: 10.1039/b922667b
|
19 |
Zhang J L, Yang H J, Shen G X, et al. Reduction of graphene oxide via L-ascorbic acid [J]. Chem. Commun., 2010, 46(7): 1112
doi: 10.1039/B917705A
|
20 |
Park H S, Hong C K. Anion exchange membrane based on sulfonated poly (styrene-ethylene-butylene-styrene) copolymers [J]. Polymers-Basel, 2021, 13(10): 1669
|
21 |
Liu J, Wang S, Tang Z H, et al. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer [J]. Macromolecules, 2016, 49(22): 8593
doi: 10.1021/acs.macromol.6b01576
|
22 |
Wang J F, Jin X X, Zhang X M, et al. Effect of tunable styrene content on achieving high-performance poly(styrene-b-ethylene-ran-butylene-b-styrene)/graphene oxide nanocomposites [J]. Compos. Sci. Technol., 2018, 164: 229
doi: 10.1016/j.compscitech.2018.05.041
|
23 |
Clark D C, Baker W E, Whitney R A. Peroxide-initiated comonomer grafting of styrene and maleic anhydride onto polyethylene: Effect of polyethylene microstructure [J]. J. Appl. Polym. Sci., 2001, 79(1): 96
doi: 10.1002/(ISSN)1097-4628
|
24 |
Chino K, Ashiura M. Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks [J]. Macromolecules, 2001, 34(26): 9201
doi: 10.1021/ma011253v
|
25 |
Zhan Y Q, Yang X L, Guo H, et al. Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability [J]. J. Mater. Chem., 2012, 22(12): 5602
doi: 10.1039/c2jm15780b
|
26 |
Tetsuka H, Asahi R, Nagoya A, et al. Optically tunable amino-functionalized graphene quantum dots [J]. Adv. Mater., 2012, 24(39): 5333
doi: 10.1002/adma.201201930
|
27 |
Mei J, Liu W F, Huang J H, et al. Lignin-reinforced ethylene-propylene-diene copolymer elastomer via hydrogen bonding interactions [J]. Macromol. Mater. Eng., 2019, 304(4): 1800689
doi: 10.1002/mame.v304.4
|
28 |
Zeng S J, Ye L, Yan S J, et al. Amphibious hybrid nanostructured proton exchange membranes [J]. J. Membrane Sci., 2011, 367(1-2): 78
doi: 10.1016/j.memsci.2010.10.041
|
29 |
Zhan Y Q, Yang X L, Guo H, et al. Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability [J]. J. Mater. Chem., 2012, 22(12): 5602
doi: 10.1039/c2jm15780b
|
30 |
Kim N H, Kuila T, Lee J H. Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application [J]. J. Mater. Chem. A, 2013, 1(4): 1349
doi: 10.1039/C2TA00853J
|
31 |
Xu K M, Zhang F S, Zhang X L, et al. Molecular insights into hydrogen bonds in polyurethane/hindered phenol hybrids: evolution and relationship with damping properties [J]. J. Mater. Chem. A, 2014, 2(22): 8545
doi: 10.1039/C4TA00476K
|
32 |
Wang W Y, Liu Y M, Jin X, et al. Effect of polypyrrole modified carbon fiber on interfacial property of composite PPy-carbon fiber/epoxy [J]. Chin. J. Mater. Res, 2017, 32(3): 209
|
|
王闻宇, 刘亚敏, 金 欣 等. 聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度 [J]. 材料研究学报, 2018, 32(3): 209
doi: 10.11901/1005.3093.2017.422
|
33 |
Li C J, Yuan Z, Ye L. Fcile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate (ZDMA) rubber composites: highly reinforcing effect and improvement mechanism of sealing resilience [J]. Compos. Part A-Appl. S., 2019, 126: 105580
doi: 10.1016/j.compositesa.2019.105580
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|