Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (12): 900-906    DOI: 10.11901/1005.3093.2021.263
ARTICLES Current Issue | Archive | Adv Search |
In-situ Growth of MoS2 on the Surface of Polyquinazoline Conjugated Microporous Polymers and Its Electrocatalysis Hydrogen Performance
JIANG Haichao1(), AN Haodong1, YANG Jing1, SU Yujin1, LI Ze1, ZHANG Bin2
1.Hebei University of Science & Technology, College of Chemical and Pharmaceutical, Shijiazhuang 050018, China
2.Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
Cite this article: 

JIANG Haichao, AN Haodong, YANG Jing, SU Yujin, LI Ze, ZHANG Bin. In-situ Growth of MoS2 on the Surface of Polyquinazoline Conjugated Microporous Polymers and Its Electrocatalysis Hydrogen Performance. Chinese Journal of Materials Research, 2022, 36(12): 900-906.

Download:  HTML  PDF(5499KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tripolyquinazoline-based conjugated microporous polymers (TQ-CMPs) were synthesized, and molybdenum sulfide (MoS2) nanoparticles grown in-situ on the surface of TQ-CMPs via hydrothermal method as a new type of composite electrocatalyst for hydrogen evolution reaction. Its electrocatalytic hydrogen evolution activity was studied. As a result, when the mass ratio of the TQ-CMPs and MoS2 is 2∶1 the electrocatalyst has excellent electrocatalytic activity for an overpotential of 71 mV and a Tafel slope of 52 mV·dec-1 for hydrogen evolution reaction. TQ-CMPs have large specific surface areas, which improve the dispersion of MoS2. The accumulation of MoS2 was avoided effectively, and more MoS2 edges was exposed, which improved the electrocatalytic activity. In addition, the abundant porous structure and extended π-conjugated framework of TQ-CMPs facilitated mass transport and charge transfer.

Key words:  composits      conjugated microporous polymers      molybdenum sulfide      hydrogen evolution reaction      electrocatalysis     
Received:  25 April 2021     
ZTFLH:  TB322  
Fund: Key Research and Development Program of Hebei Province(19273808D);the Science and Technology Research and Development Program of Shijiazhuang City(201240253A)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.263     OR     https://www.cjmr.org/EN/Y2022/V36/I12/900

Fig.1  FI-IR spectra of TQ-CMPs
Fig.2  N2 adsorption and desorption isotherms at 77K (a) and pore width distribution (b)
Fig.3  XRD pattern of MoS2, TQ-CMPs@MoS2 and TQ-CMP
Fig.4  SEM images of TQ-CMPs (a) and TQ-CMPs@MoS2 2∶1 (b). TEM images of TQ-CMPs (c) and TQ-CMPs@MoS2 2∶1 (d). HRTEM images of TQ-CMPs@MoS2 2∶1 (e, f)
Fig.5  Electrochemical performances of all catalysts (a) LSV in 0.5 mol·L?1 H2SO4, (b) Tafel slope calculated from LSVs, (c) Nyquist plots of all catalysts, (d) Stability and (e) Cyclic voltammetry curves of TQ-CMPs@MoS2 2∶1, (f) The double-layer capacitance (Cdl) of all catalystsv (■: Pt/C 20%;◆: TQ-CMPs@ MoS2 5∶1; ▲: TQ-CMPs@ MoS2 2∶1; ●: TQ-CMPs@MoS2 1∶1; ▼: TQ-CMPs@MoS2 1∶2; ?: TQ-CMPs; ?: MoS2)
1 Lu S, Hu Y, Wan S, et al. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications [J]. Journal of the American Chemical Society, 2017, 139(47): 17082
doi: 10.1021/jacs.7b07918 pmid: 29095604
2 Wang J, Xu F, Jin H, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications [J]. Advanced Materials, 2017, 29(14): 1605838
doi: 10.1002/adma.201605838
3 Chen Y, Yu G, Chen W, et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction [J]. Journal of the American Chemical Society, 2017, 139(36): 12370
doi: 10.1021/jacs.7b06337 pmid: 28686430
4 Karunadasa H I, Chang C J, Long J R. A molecular molybdenum-oxo catalyst for generating hydrogen from water [J]. Nature, 2010, 464(7293): 1329
doi: 10.1038/nature08969
5 Zhang Z, Zhao Z, Hou Y, et al. Aqueous platinum(ii)‐cage‐based light‐harvesting system for photocatalytic cross‐coupling hydrogen evolution reaction [J]. Angewandte Chemie International Edition, 2019, 58(26): 8862
doi: 10.1002/anie.201904407
6 Pi Y, Shao Q, Wang P, et al. General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting [J]. Advanced Functional Materials, 2017, 27(27): 1700886
doi: 10.1002/adfm.201700886
7 Zhao Y, LI J, Yang D H, et al. Preparation of MoS2/Y zeolite microbial electrolysis cell cathode materialand its electrochemical properties [J]. Chemical Industry and Engineering Progress, 2021, 05: 2695
赵 煜, 李 佳, 杨冬花 等. MoS2/Y分子筛微生物电解池阴极材料制备及其电化学性能 [J]. 化工进展, 2021, 05: 2695
8 Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction [J]. Journal of Materials Chemistry A, 2015, 3(29): 14942
doi: 10.1039/C5TA02974K
9 Hug S, Stegbauer L, Oh H, et al. Nitrogen-rich covalent triazine frameworks as high-performance platforms for selective carbon capture and storage [J]. Chemistry of Materials, 2015, 27(23): 8001
doi: 10.1021/acs.chemmater.5b03330
10 Gao X, Qi J, Wan S, et al. Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution [J]. Small, 2018, 14(48): 1803361
doi: 10.1002/smll.201803361
11 Yan Y, Xia B, Xu Z, et al. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction [J]. ACS Catalysis, 2014, 4(6): 1693
doi: 10.1021/cs500070x
12 Gao X, Dong Y, Li S, et al. MOFs and COFs for batteries and supercapacitors [J]. Electrochemical Energy Reviews, 2019, 3(1): 81
doi: 10.1007/s41918-019-00055-1
13 Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions [J]. Chemical Reviews, 2020, 120(16): 8814
doi: 10.1021/acs.chemrev.9b00550 pmid: 31967791
14 Gao Q, Li X, Ning G H, et al. Covalent organic framework with frustrated bonding network for enhanced carbon dioxide storage [J]. Chemistry of Materials, 2018, 30(5): 1762
doi: 10.1021/acs.chemmater.8b00117
15 Puthiaraj P, Lee Y R, Zhang S, et al. Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis [J]. Journal of Materials Chemistry A, 2016, 4(42): 16288
doi: 10.1039/C6TA06089G
16 Bhunia S, Das S K, Jana R, et al. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework [J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23843
17 Gao Y F, Song Y L, Wang Y P, et al. Preparation, characterization and electrochemical performance in H2SO4 electrolyte of PbSO4/AC [J]. Chinese Journal of Materials Research, 2013, 5: 539
高云芳, 宋云龙, 王艳平 等. PbSO4/活性炭复合材料的制备和电化学性能 [J]. 材料研究学报, 2013, 5: 539
18 Tian X, Zhao P, Sheng W. Hydrogen evolution and oxidation: mechanistic studies and material advances [J]. Advanced Materials, 2019, 31(31): 1808066
doi: 10.1002/adma.201808066
19 Zhou M, Bao S, Bard A J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles [J]. Journal of the American Chemical Society, 2019, 141(18), 7327
doi: 10.1021/jacs.8b13366 pmid: 31017772
20 Xu Y, Jin S, Xu H, et al. Conjugated microporous polymers: design, synthesis and application [J]. Chemical Society Reviews, 2013, 42(20), 8012
doi: 10.1039/c3cs60160a pmid: 23846024
21 Lee J S M, Cooper A I. Advances in Conjugated Microporous Polymers [J]. Chemical Reviews, 2020, 120(4), 2171
doi: 10.1021/acs.chemrev.9b00399
22 Qiao S, Zhang B, Li Q, et al. Pore surface engineering of covalent triazine frameworks@MoS2 electrocatalyst for the hydrogen evolution reaction [J]. Chem Sus Chem, 2019, 12(22), 5032
doi: 10.1002/cssc.201902582
23 Qiao S, Zhao J, Zhang B, et al. Micrometer-scale biomass carbon tube matrix auxiliary MoS2 heterojunction for electrocatalytic hydrogen evolution [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32019
doi: 10.1016/j.ijhydene.2019.10.117
24 Hu D, Zhao T, Ping X, et al. Unveiling the layer-dependent catalytic activity of PtSe 2 atomic crystals for the hydrogen evolution reaction [J]. Angewandte Chemie International Edition, 2019, 58(21), 6977
doi: 10.1002/anie.201901612
25 Li Z, Feng Y, Liang Y L, et al. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction [J]. Advanced Materials, 2020, 32(25): 1908521
doi: 10.1002/adma.201908521
26 Buyukcakir O, Yuksel R, Jiang Y, et al. Synthesis of porous covalent quinazoline networks (CQNs) and their gas sorption properties [J]. Angewandte Chemie International Edition, 2019, 58(3): 872
doi: 10.1002/anie.201813075
27 Huang Y, Nielsen R J, Goddard W A. Reaction mechanism for the hydrogen evolution reaction on the basal plane sulfur vacancy site of MoS2 using grand canonical potential kinetics [J]. Journal of the American Chemical Society, 2018, 140(48): 16773
doi: 10.1021/jacs.8b10016
28 Xu Q, Liu Y, Jiang H, et al. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation [J]. Advanced Energy Materials, 2018, 9(2): 1802553
doi: 10.1002/aenm.201802553
29 Zhou Y, Silva J L, Woods J M, et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity [J]. Advanced Materials, 2018, 30(18): 1706076
doi: 10.1002/adma.201706076
30 Chen Z, Wu R, Liu Y, et al. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction [J]. Advanced Materials, 2018, 30(30): 1802011
doi: 10.1002/adma.201802011
31 Tang S, Zeng L, Lei A, et al. Oxidative R1-H/R2-H Cross-coupling with hydrogen evolution [J]. Journal of the American Chemical Society, 2018, 140(41): 13128
doi: 10.1021/jacs.8b07327
32 Alexa P, Lombardi J M, Abufager P, et al. Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer [J]. Angewandte Chemie International Edition, 2020, 59(22): 8411
doi: 10.1002/anie.201915855
33 Liu Y, Zhou X, Ding T, et al. 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production [J]. Nanoscale, 2015, 7(43): 18004
doi: 10.1039/C5NR03810C
[1] HOU Yutong, LI Xin, LI Dawei, WEI Qufu. Preparation of Immobilized Laccase onto Framework-like Material of Metal-organic Compound and Its Degradation for Catechol[J]. 材料研究学报, 2022, 36(10): 793-800.
[2] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[3] SHI Jialun, SHENG Minqi, WU Qiong, LV Fan. Preparation of Electrode Materials of Amorphous Co-W-B/Carbon Cloth Composite and their Electro-catalytic Performance for Electrolysis of Water[J]. 材料研究学报, 2020, 34(4): 263-271.
[4] Yu WANG, Minqi SHENG, Wenping WENG, Jifang XU, Mengqiu CAO. Electrocatalytic Hydrogen Evolution Reaction on Electrodeposited Amorphous Co-W Alloy Coatings in Alkaline Solution[J]. 材料研究学报, 2017, 31(10): 773-780.
[5] Yanli WANG,Dexin TAN,Sen CHEN,Ling BIAN. Synthesis of Nano-Pd Particles in a Quaternary System with a Hexagonal Liquid Crystal as Template and Their Electrocatalytic Activity for Oxidation of Ethanol[J]. 材料研究学报, 2014, 28(6): 413-419.
[6] WANG Wei; GUO Hetong; GAO Jianping; QIN Qixiang (Tianjin University)REN Diansheng (46th Institute of Electronic Industry Ministry). INTERFACIAL ORBITAL INTERACTION IN Ni-ZrO_2COMPOSITE PLATING AND HYDROGEN EVOLUTION REACTION[J]. 材料研究学报, 1997, 11(2): 143-147.
No Suggested Reading articles found!