|
|
In-situ Growth of MoS2 on the Surface of Polyquinazoline Conjugated Microporous Polymers and Its Electrocatalysis Hydrogen Performance |
JIANG Haichao1( ), AN Haodong1, YANG Jing1, SU Yujin1, LI Ze1, ZHANG Bin2 |
1.Hebei University of Science & Technology, College of Chemical and Pharmaceutical, Shijiazhuang 050018, China 2.Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China |
|
Cite this article:
JIANG Haichao, AN Haodong, YANG Jing, SU Yujin, LI Ze, ZHANG Bin. In-situ Growth of MoS2 on the Surface of Polyquinazoline Conjugated Microporous Polymers and Its Electrocatalysis Hydrogen Performance. Chinese Journal of Materials Research, 2022, 36(12): 900-906.
|
Abstract Tripolyquinazoline-based conjugated microporous polymers (TQ-CMPs) were synthesized, and molybdenum sulfide (MoS2) nanoparticles grown in-situ on the surface of TQ-CMPs via hydrothermal method as a new type of composite electrocatalyst for hydrogen evolution reaction. Its electrocatalytic hydrogen evolution activity was studied. As a result, when the mass ratio of the TQ-CMPs and MoS2 is 2∶1 the electrocatalyst has excellent electrocatalytic activity for an overpotential of 71 mV and a Tafel slope of 52 mV·dec-1 for hydrogen evolution reaction. TQ-CMPs have large specific surface areas, which improve the dispersion of MoS2. The accumulation of MoS2 was avoided effectively, and more MoS2 edges was exposed, which improved the electrocatalytic activity. In addition, the abundant porous structure and extended π-conjugated framework of TQ-CMPs facilitated mass transport and charge transfer.
|
Received: 25 April 2021
|
|
Fund: Key Research and Development Program of Hebei Province(19273808D);the Science and Technology Research and Development Program of Shijiazhuang City(201240253A) |
1 |
Lu S, Hu Y, Wan S, et al. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications [J]. Journal of the American Chemical Society, 2017, 139(47): 17082
doi: 10.1021/jacs.7b07918
pmid: 29095604
|
2 |
Wang J, Xu F, Jin H, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications [J]. Advanced Materials, 2017, 29(14): 1605838
doi: 10.1002/adma.201605838
|
3 |
Chen Y, Yu G, Chen W, et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction [J]. Journal of the American Chemical Society, 2017, 139(36): 12370
doi: 10.1021/jacs.7b06337
pmid: 28686430
|
4 |
Karunadasa H I, Chang C J, Long J R. A molecular molybdenum-oxo catalyst for generating hydrogen from water [J]. Nature, 2010, 464(7293): 1329
doi: 10.1038/nature08969
|
5 |
Zhang Z, Zhao Z, Hou Y, et al. Aqueous platinum(ii)‐cage‐based light‐harvesting system for photocatalytic cross‐coupling hydrogen evolution reaction [J]. Angewandte Chemie International Edition, 2019, 58(26): 8862
doi: 10.1002/anie.201904407
|
6 |
Pi Y, Shao Q, Wang P, et al. General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting [J]. Advanced Functional Materials, 2017, 27(27): 1700886
doi: 10.1002/adfm.201700886
|
7 |
Zhao Y, LI J, Yang D H, et al. Preparation of MoS2/Y zeolite microbial electrolysis cell cathode materialand its electrochemical properties [J]. Chemical Industry and Engineering Progress, 2021, 05: 2695
|
|
赵 煜, 李 佳, 杨冬花 等. MoS2/Y分子筛微生物电解池阴极材料制备及其电化学性能 [J]. 化工进展, 2021, 05: 2695
|
8 |
Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction [J]. Journal of Materials Chemistry A, 2015, 3(29): 14942
doi: 10.1039/C5TA02974K
|
9 |
Hug S, Stegbauer L, Oh H, et al. Nitrogen-rich covalent triazine frameworks as high-performance platforms for selective carbon capture and storage [J]. Chemistry of Materials, 2015, 27(23): 8001
doi: 10.1021/acs.chemmater.5b03330
|
10 |
Gao X, Qi J, Wan S, et al. Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution [J]. Small, 2018, 14(48): 1803361
doi: 10.1002/smll.201803361
|
11 |
Yan Y, Xia B, Xu Z, et al. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction [J]. ACS Catalysis, 2014, 4(6): 1693
doi: 10.1021/cs500070x
|
12 |
Gao X, Dong Y, Li S, et al. MOFs and COFs for batteries and supercapacitors [J]. Electrochemical Energy Reviews, 2019, 3(1): 81
doi: 10.1007/s41918-019-00055-1
|
13 |
Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions [J]. Chemical Reviews, 2020, 120(16): 8814
doi: 10.1021/acs.chemrev.9b00550
pmid: 31967791
|
14 |
Gao Q, Li X, Ning G H, et al. Covalent organic framework with frustrated bonding network for enhanced carbon dioxide storage [J]. Chemistry of Materials, 2018, 30(5): 1762
doi: 10.1021/acs.chemmater.8b00117
|
15 |
Puthiaraj P, Lee Y R, Zhang S, et al. Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis [J]. Journal of Materials Chemistry A, 2016, 4(42): 16288
doi: 10.1039/C6TA06089G
|
16 |
Bhunia S, Das S K, Jana R, et al. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework [J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23843
|
17 |
Gao Y F, Song Y L, Wang Y P, et al. Preparation, characterization and electrochemical performance in H2SO4 electrolyte of PbSO4/AC [J]. Chinese Journal of Materials Research, 2013, 5: 539
|
|
高云芳, 宋云龙, 王艳平 等. PbSO4/活性炭复合材料的制备和电化学性能 [J]. 材料研究学报, 2013, 5: 539
|
18 |
Tian X, Zhao P, Sheng W. Hydrogen evolution and oxidation: mechanistic studies and material advances [J]. Advanced Materials, 2019, 31(31): 1808066
doi: 10.1002/adma.201808066
|
19 |
Zhou M, Bao S, Bard A J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles [J]. Journal of the American Chemical Society, 2019, 141(18), 7327
doi: 10.1021/jacs.8b13366
pmid: 31017772
|
20 |
Xu Y, Jin S, Xu H, et al. Conjugated microporous polymers: design, synthesis and application [J]. Chemical Society Reviews, 2013, 42(20), 8012
doi: 10.1039/c3cs60160a
pmid: 23846024
|
21 |
Lee J S M, Cooper A I. Advances in Conjugated Microporous Polymers [J]. Chemical Reviews, 2020, 120(4), 2171
doi: 10.1021/acs.chemrev.9b00399
|
22 |
Qiao S, Zhang B, Li Q, et al. Pore surface engineering of covalent triazine frameworks@MoS2 electrocatalyst for the hydrogen evolution reaction [J]. Chem Sus Chem, 2019, 12(22), 5032
doi: 10.1002/cssc.201902582
|
23 |
Qiao S, Zhao J, Zhang B, et al. Micrometer-scale biomass carbon tube matrix auxiliary MoS2 heterojunction for electrocatalytic hydrogen evolution [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32019
doi: 10.1016/j.ijhydene.2019.10.117
|
24 |
Hu D, Zhao T, Ping X, et al. Unveiling the layer-dependent catalytic activity of PtSe 2 atomic crystals for the hydrogen evolution reaction [J]. Angewandte Chemie International Edition, 2019, 58(21), 6977
doi: 10.1002/anie.201901612
|
25 |
Li Z, Feng Y, Liang Y L, et al. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction [J]. Advanced Materials, 2020, 32(25): 1908521
doi: 10.1002/adma.201908521
|
26 |
Buyukcakir O, Yuksel R, Jiang Y, et al. Synthesis of porous covalent quinazoline networks (CQNs) and their gas sorption properties [J]. Angewandte Chemie International Edition, 2019, 58(3): 872
doi: 10.1002/anie.201813075
|
27 |
Huang Y, Nielsen R J, Goddard W A. Reaction mechanism for the hydrogen evolution reaction on the basal plane sulfur vacancy site of MoS2 using grand canonical potential kinetics [J]. Journal of the American Chemical Society, 2018, 140(48): 16773
doi: 10.1021/jacs.8b10016
|
28 |
Xu Q, Liu Y, Jiang H, et al. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation [J]. Advanced Energy Materials, 2018, 9(2): 1802553
doi: 10.1002/aenm.201802553
|
29 |
Zhou Y, Silva J L, Woods J M, et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity [J]. Advanced Materials, 2018, 30(18): 1706076
doi: 10.1002/adma.201706076
|
30 |
Chen Z, Wu R, Liu Y, et al. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction [J]. Advanced Materials, 2018, 30(30): 1802011
doi: 10.1002/adma.201802011
|
31 |
Tang S, Zeng L, Lei A, et al. Oxidative R1-H/R2-H Cross-coupling with hydrogen evolution [J]. Journal of the American Chemical Society, 2018, 140(41): 13128
doi: 10.1021/jacs.8b07327
|
32 |
Alexa P, Lombardi J M, Abufager P, et al. Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer [J]. Angewandte Chemie International Edition, 2020, 59(22): 8411
doi: 10.1002/anie.201915855
|
33 |
Liu Y, Zhou X, Ding T, et al. 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production [J]. Nanoscale, 2015, 7(43): 18004
doi: 10.1039/C5NR03810C
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|