Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (4): 299-303    DOI: 10.11901/1005.3093.2019.532
ARTICLES Current Issue | Archive | Adv Search |
Synthesis of Nano-SnAgCu Solder by Microemulsion Method
YU Xin, DI Tongtong, SHEN Hangyan()
School of Material and Chemistry, China Jiliang University, Hangzhou 310018, China
Cite this article: 

YU Xin, DI Tongtong, SHEN Hangyan. Synthesis of Nano-SnAgCu Solder by Microemulsion Method. Chinese Journal of Materials Research, 2020, 34(4): 299-303.

Download:  HTML  PDF(5185KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano-SnAgCu solder of low melting point was prepared by means of microemulsion method. The effect of different surfactants, Sn-precursors and the ratio of microemulsion on the melting temperature of the prepared particles of nano-SnAgCu solder was systematically investigated. Results show that the lowest initial melting temparture, 183.6oC was acquired for the particles of nano-SnAgCu solder prepared via the process with optimal processing parameters, namely the prepared Sn3.0Ag0.5Cu solder presents a melting point of 183.6oC, which is close to 183oC of the lowest melting point of SnPb solder, while is c.a. 32.2oC below that of the commercial solder paste (217.8oC).

Key words:  non-ferrous metals and their alloys      nano SnAgCu solder      microemulsion method      melting temperature     
Received:  14 November 2019     
ZTFLH:  TG425  
Fund: the Science and Technology Project of Zhejiang Province(No. 2018C01123)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.532     OR     https://www.cjmr.org/EN/Y2020/V34/I4/299

Fig.1  XRD pattern of Sn3.0Ag0.5Cu nanoparticles synthesized by microemulsion method
Fig.2  TEM images of nano-SnAgCu particles
Fig.3  Particle size of different microemulsion reactors: the water phase was (0) pure deionized water; (I) solution of metal precursor; (Ⅱ) solution of reducing agent
Fig.4  TEM images of SnAgCu particles in different particle sizes synthesized by microemulsion method (a) 500 nm; (b) 60 nm; (c) 10 nm
SampleParticle size/nmMelting point/℃Remark
Sn3.0Ag0.5Cu22198[3]
Sn-3.8Ag-0.7Cu18187.8[4]
Sn3.0Ag0.5Cu<50200[5]
Sn3.5AgxCu40215[6]
Table 1  Research results of the melting temperature and the particle size of SnAgCu nano-particles
Sample

mCTAB

/g

mSPAN80

/g

mOP-10

/g

mTritinX114

/g

mIsopropanol

/g

mCyclohexa-ne

/g

mWater

/g

SAC a10---303010
SAC b-10--303010
SAC c--10-303010
SAC d---10303010
Table 2  Synthesis parameters of different surfactants
Fig.5  DSC of SnAgCu sample synthesized by different surfactants (a) CTAB; (b) SPAN80; (c) OP-10 (d) TritinX114
SamplemC16H30O4Sn/gmSnCl2 /gmSnSO4/gmAgNO3/gmCu(NO3)23H2O/gSurfactant

Proportion of

microemulsion

SAC a6.553--0.110.0363TritonX1141:3:3:1
SAC b-3.610-0.110.0363TritonX1141:3:3:1
SAC c--3.4360.110.0363TritonX1141:3:3:1
Table 3  Synthesis parameters of different tin precursors
Fig.6  DSC diagram of SAC particles synthesized by different Sn precursors (a) C16H30O4Sn; (b) SnCl2; (c) SnSO4
SampleMicroemulsion ratioMicroemulsion particle size/nmStarting point/℃Peak melting point/℃
SAC a1:3:3:0.53.12205.7215.3
SAC b1:3:3:1.09.07183.6200.9
SAC c1:3:3:1.515.68205.5214.7
Table 4  Competition of microemulsion particle size and nano-Sn3.0Ag0.5Cu particle melting point in different synthesis parameters of microemulsion
[1] Zhang S S, Zhang Y J, Wang H W. Effect of particle size distributions on the rheology of Sn/Ag/Cu lead-free solder pastes [J]. Mater. Des., 2010, 31(1): 594
[2] Roshanghias A, Khatibi G, Yakymovych A, et al. Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength [J]. J. Electron. Mater., 2016, 45(8): 4390
[3] Jiang H, Moon K S, Wong C P. Recent advances of nanolead-free solder material for low processing temperature interconnect applications [J]. Microelectron. Reliab., 2013, 53(12): 1968
[4] Roshanghias A, Yakymovych A, Bernardi J, et al. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles [J]. Nanoscale, 2015, 7(13): 5843
doi: 10.1039/c5nr00462d pmid: 25757694
[5] Zou C, Gao Y, Yang B, et al. Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression [J]. J. Mater. Sci.Mater. Electron., 2012, 23(1): 2
doi: 10.1007/s10856-012-4547-0 pmid: 22271276
[6] Hsiao L Y, Duh J G. Synthesis and characterization of lead-free solders with Sn-3.5Ag-xCu (x=0.2, 0.5, 1.0) alloy nanoparticles by the chemical reduction method [J]. J. Electrochem. Soc., 2005, 152(9): 105
[7] Bumajdad A, Al-Ghareeb S, Madkour M, et al. Synthesis of MgO nanocatalyst in water-in-oil microemulsion for CO oxidation [J]. React. Kinet., Mech. Catal., 2017,122(2): 1213
[8] Mukundan S, Konarova M, Atanda L, et al. Guaiacol hydrodeoxygenation reaction catalyzed by highly dispersed, single layered MoS2/C [J]. Catal. Sci. Technol., 2015, 5(9): 4422
[9] Hernández J, Solla-Gullón J, Herrero E. Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction [J]. J. Electroanal. Chem., 2004, 574(1): 185
[10] Zhang C P, Lei B X, Li Z. Preparation and magnetic properties of nanosize Fe-Co-Ni alloy and composite particles by water-in-oil microemulsions [J]. Nanotech Prec En, 2012, 10(1): 36
(张朝平, 雷炳新, 李振. W/O微乳液法制备Fe-Co-Ni合金和复合物纳米颗粒材料及其磁性能研究 [J]. 纳米技术与精密工程, 2012, 10(1): 36)
[11] Mandal R P, De S. Organized assemblies of AOT determine nano-particle characteristics and their performance as FRET donors [J]. Colloids Surf., A, 2017, 528(5): 10
doi: 10.1016/j.colsurfa.2017.05.038
[1] TANG Zhaohui, DING Xueyong, DONG Yue, LIU Chenghong, WEI Guo. Influence of w(MgO) on Viscous Flow Property of High Ti-containing Blast Furnace Slag[J]. 材料研究学报, 2016, 30(6): 443-447.
[2] SONG Mingshi CHEN Han HU Guixian YANG Lin (Beijing Institute of Chemical Technology). STUDY ON THE RELATIONSHIP BETWEEN THE PROCESSING AND MECHANICAL PROPERTIES FOR SELF-REINFORCED POLYMERS——5.Dependence of Incipient Melting Temperature on the Draw Ratios and Morphology[J]. 材料研究学报, 1993, 7(4): 351-356.
No Suggested Reading articles found!