Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (11): 874-880    DOI: 10.11901/1005.3093.2016.636
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Properties of Composites of Polyvinyl Alcohol Grafted Graphene Oxide/thermoplastic Polyurethane
Xing ZHOU1, Bin HU1, Wenqiang XIAO1, Hao JIANG1, Lijun ZHANG1, Zhengjun WANG1, Hailai LIN1, Jun BIAN1(), Xinwei ZHAO2
1 School of Materials Science and Engineering, XiHua University, Chengdu 610039, China.
2 Department of Physics, Tokyo University of Science, Tokyo 162-8601, Japan.
Cite this article: 

Xing ZHOU, Bin HU, Wenqiang XIAO, Hao JIANG, Lijun ZHANG, Zhengjun WANG, Hailai LIN, Jun BIAN, Xinwei ZHAO. Preparation and Properties of Composites of Polyvinyl Alcohol Grafted Graphene Oxide/thermoplastic Polyurethane. Chinese Journal of Materials Research, 2017, 31(11): 874-880.

Download:  HTML  PDF(1096KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of GO-g-PVA/TPU were prepared by using polyvinyl alcohol (PVA) grafted graphene oxide as filler and thermoplastic polyurethane (TPU) as matrix by melt blending method. The structure and properties of the resultant composites were characterized by means of FTIR, DSC, DMA and tensile tests. DSC tests show that the addition of GO-g-PVA increased the crystallization temperature of the composites. When the content (mass fraction%) of GO-g-PVA was 4%, the crystallization temperature of GO-g-PVA/TPU increased by 28.8℃ in contrast to that of the plain TPU. Tensile tests show that the modulus of GO-g-PVA/TPU composites increased with the increasing filler content when the content of GO-g-PVA was higher than 1%. DMA analysis indicated that GO-g-PVA enhanced the storage modulus and loss modulus of GO-g-PVA/TPU composites. Shape memory properties results show that the addition of GO-g-PVA significantly improved the shape fixed rate (Rf) of the composites. When the content of GO-g-PVA was 4%, the Rf of the composite was 87.5%, which increased by 20% compared with that of pure TPU. However, with the increasing amount of GO-g-PVA the shape recovery ratio (Rr) of the composite decreased generally at 50℃, and the composites showed higher Rr value at high temperature rather than at low temperature.

Key words:  composites      thermoplastic polyurethane      functionalized graphene      melt blending      shape memory     
Received:  01 November 2016     
Fund: Supported by General Research Project of Sichuan Provincial Education Department (No. 17ZB0422) Open Research Subject of Key Laboratory of Special Materials and Preparation Technology (No. SZjj2017-066, SZjj2015-086), National Undergraduate Training Programs for Innovation and Entrepreneurship (Nos. 201710623098 & 201510623033), Xihua University Young Scholars Training Program (No. 01201404)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.636     OR     https://www.cjmr.org/EN/Y2017/V31/I11/874

Fig.1  FTIR spectra of (a) Graphite Oxide and (b) GO-g-PVA
Fig.2  Reaction principle of the preparation of GO-g-PVA
Fig.3  XRD curves of (a) GO,PVA,GO-g-PVA and (b) TPU、GO-g-PVA/TPUcomposites with 4%mass fraction of GO-g-PVA
Fig.4  DSC curves of GO-g-PVA/TPU composites with different mass fractions of GO-g-PVA (a) crystallization curves, (b) melting curves
GO-g-PVA/% 0 0.5 4
Tc/℃ 83.4 84.2 112.0
Tm/℃ 165.5 165.9 167.5
Table 1  DSC testing results of GO-g-PVA/TPU composites with different filler contents
Fig.5  DMA curves of GO-g-PVA/TPU composites with different mass fractions of GO-g-PVA
Fig.6  Effect of filler contents on the stress at definite elongation (300%、500%、1000%) of GO-g-PVA /TPU composites
Content of GO-g-PVA /% 0 0.25 0.5 1 2 4
shape fixed rate Rf/% 73.1 85.2 86.1 86.4 84.2 87.5
50℃ shape recovery rateRr1/% 79.6 76.1 74.8 68.0 72.7 72.2
80℃ shape recovery rateRr2/% 85.1 85.2 87 83.8 84.6 84.4
100℃ shape recovery rateRr3/% 88.7 88.4 89.2 86.8 89.2 89.4
Table 2  Shape memory testing results of GO-g-PVA/TPU
[1] Kim H, Miura Y, Macosko C W.Graphene/Polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22(11): 3441
[2] Zuo L, Chen D J.Research progress of shape memory polyurethane[J]. Polymeric Materials Science & Engineering, 2004, 20(6): 37(左兰, 陈大俊. 形状记忆聚氨酯的研究进展[J]. 高分子材料科学与工程, 2004, 20(6): 37)
[3] Yang Y H, Sun H J, Peng T J.Synthesis and structural characterization of graphene by oxidation reduction[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(11): 2083(杨永辉, 孙洪娟, 彭同江. 石墨烯的氧化还原法制备及结构表征[J]. 无机化学学报, 2010, 26(11): 2083)
[4] Banhart F, Kotakoski J, Krasheninnikov A V.Structural defects in graphene[J]. ACS nano, 2010, 5(1): 26
[5] Hashimoto A, Suenaga K, Gloter A, et al.Direct evidence for atomic defects in graphene layers[J]. Nature, 2004, 430(7002): 870
[6] Cao Y, Li G T, Li X B.Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications[J]. Chemical Engineering Journal, 2016, 292: 207
[7] Zhou X, Wang Z J, Lin H L, et al.Research progress on the shape memory property of polyurethane and it's composites[J]. China Plastics Industry, 2015, 43(9): 19(周醒, 王正君, 蔺海兰等. 聚氨酯及其复合材料形状记忆性能的研究进展[J]. 塑料工业, 2015, 43(9): 19)
[8] Wu C, Huang X, Wang G, et al.Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites[J]. Journal of Materials Chemistry, 2012, 22(14): 7010
[9] Kim H, Miura Y, Macosko C W.Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22(11): 3441
[10] Raja M, Ryu S H, Shanmugharaj A M.Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid)(PLA)/CNT nanocomposites[J]. European Polymer Journal, 2013, 49(11): 3492
[11] Han S, Chun B C.Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect[J]. Composites Part A: Applied Science and Manufacturing, 2014, 58: 65
[12] You F, Wang D, Li X, et al.Interfacial engineering of polypropylene/graphene nanocomposites: improvement of graphene dispersion by using tryptophan as a stabilizer[J]. RSC Advances, 2014, 4(17): 8799
[13] Bao C, Guo Y, Yuan B, et al.Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies[J]. Journal of Materials Chemistry, 2012, 22(43): 23057
[14] He H, Gao C.General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry[J]. Chemistry of Materials, 2010, 22(17): 5054
[15] Bian J, Lin H L, He F X, et al.Fabrication of microwave exfoliated graphite oxide reinforced thermoplastic polyurethane nanocomposites: effects of filler on morphology, mechanical, thermal and conductive properties[J]. Composites : Part A, 2013, 47(1): 72
[16] Hei F X, Bian J, Lin H L, et al.TPU/TRG nanocomposites prepared by masterbatch-melting compounding process[J]. Journal of Xihua University: Natural Science Edition, 2014, 33(6): 57(何飞雄, 卞军, 蔺海兰等. 母料-熔融共混法制备TPU/TRG纳米复合材料[J]. 西华大学学报:自然科学版, 2014, 33(6): 57)
[17] Lin H L, Zhu Q L, Bian J, et al.Preparation and properties of blended graphene oxide-nano SiO2/TPU composites[J]. Acta Materiae Compositae Sinica, 2016, 33(07): 1382(蔺海兰, 朱庆兰, 卞军等. 共混型石墨烯-nano SiO2/TPU复合材料的制备与性能[J]. 复合材料学报, 2016, 33(07): 1382)
[18] Hummers Jr W S,Offeman R E. Preparation of graphitic oxide[J]. Journal of American Society, 1958, 80(6): 1339
[19] Jiang D F.Study on the structure and properties of carbon nanotubes filled polyurethane and preparation of polyurethane/carbon nanotubes Nanocomposites[D]. Beijing University of Chemical Technology, 2009(江凤丹. 聚氨酯/碳纳米管纳米复合材料的制备及结构与性能研究[D]. 北京化工大学, 2009)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!