Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (7): 503-508    DOI: 10.11901/1005.3093.2015.162
Orginal Article Current Issue | Archive | Adv Search |
Effect of Matrix Properties on Thermal Residual Stress of Fiber Reinforced Ti-matrix Composities
LOU Juhong1,2,*(), YANG Yanqing2
1. department of Mechanical engineering, Taiyuan Institute of Technology, Taiyuan 030008, China2. School of Materials, Northwestern Polytechnical University, Xi’an 710072, China
Cite this article: 

LOU Juhong, YANG Yanqing. Effect of Matrix Properties on Thermal Residual Stress of Fiber Reinforced Ti-matrix Composities. Chinese Journal of Materials Research, 2016, 30(7): 503-508.

Download:  HTML  PDF(1213KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The magnitude and distribution of the interfacial stresses along the radial-, axial- and circumferential directions at fiber side of fiber reinforced composites SiCf / Ti-6Al-4V with the change of thermal expansion coefficient and elasticity modulus of the matrix are analysed by three-dimensional model established by using finite element method. The results show that the change of interfacial residual stress is proportional to that of thermal expansion coefficient of matrix, and the no-uniformity of distribution of the residual stress along the circumferential direction of fiber decreases with the decrease of thermal expansion coefficient. In addition, interfacial residual stress usually increases with the increase of elasticity modulus of matrix, but the increase of which reduces gradually.

Key words:  composites      thermal residual stress      finite element method      matrix properties     
Received:  05 June 2015     
Fund: *Supported by National Natural Science Foundation of China No 51271147
About author:  To whom correspondence should be addressed,Tel: 18635117310, E-mail:fxj815@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.162     OR     https://www.cjmr.org/EN/Y2016/V30/I7/503

T(℃) α1 α2 α3 α4
20 8.8 7.04 5.28 3.52
200 9.4 7.52 5.64 3.76
400 10.3 8.24 6.18 4.12
600 10.8 8.64 6.48 4.32
800 11.5 9.2 6.9 4.6
Table 1  Original data and change value of thermal expansion coefficient for Ti-6Al-4V matrix (10-6/℃)
T(℃) E1 E2 E3 E4
20 114.0 228.0 342 456
200 103.8 207.6 311.4 415.2
400 92.6 185.3 277.8 370.4
600 76.4 152.8 229.2 305.6
800 62.8 125.6 188.4 251.2
Table 2  Original data and change value of elastic modulus for Ti-6Al-4V matrix(GPa)
T(℃) E(GPa) ν α(10-6/℃)
All temperature 402 0.25 4.0
Table 3  Main properties of domestic SiC fiber
Fig.1  Two-dimensional cross-sections of different fiber arrays (unit: mm) (a) square array, (b) hexagonal array
Fig.2  Finite element model for different fiber arrays (a) square array, (b) hexagonal array
Fig.3  Distributions of interfacial residual stresses in fiber with different coefficient of thermal expansion for matrix (a)radial residual stress (b) axial residual stress (c) hoop residual stress (“1”represents fiber square array and “2”represents fiber hexagonal array)
Fig.4  Distributions of interfacial residual stresses in fiber with different elastic modulus for matrix (a) radial residual stress (b) axial residual stress (c) hoop residual stress (“1”represents fiber square array and “2”represents fiber hexagonal array)
1 YUAN Meini, YANG Yanqing, LUO Xian, ZHANG Rongjun, Microstress distribution of titanium matrix composites, Chinese Journal of material research, 22(4), 389(2008)
(原梅妮, 杨延清, 罗贤, 张荣军, 钛基复合材料中的微区应力分布, 材料研究学报, 22(4), 389(2008))
doi:
2 D. B. Miracle, Metal matrix composites-From science to technological significance, Composites Science and Technology, 65, 2526(2005)
doi: 10.1016/j.compscitech.2005.05.027
3 Y. Q. Yang, Y. Zhu, Y. Chen, Q. G. Zhang, J.M. Zhang, Processing and property of SiC fiber reinforced Ti-matrix composite, Rare Metal Materials and Engineering, 31, 201(2002)
doi: 10.1002/pip.421
4 HU Hengzhi, Challenge and development trends to future aero-engine materials, Journal of aeronautical materials, 18(4), 52(1998)
(傅恒志, 未来航空发动机材料面临的挑战与发展趋向, 航空材料学报, 18(4), 52(1998) )
5 M. Kuntz, B. Meier, G. Grathwohl, Residual Stresses in Fiber-Reinforced Ceramics due to Thermal Expansion Mismatch, Journal of the American Ceramic Society, 76(10), 2607(1993)
doi: 10.1111/j.1151-2916.1993.tb03988.x
6 Ma Zhi-jun, Yang Yan-qing, Zhu Yan, Chen Yan, Effect of fiber distribution on residual thermal stress in titanium matrix composite, Trans. Nonferrous Met. Soc. China, 14(2), 330(2004)
7 S. W. Warrier, P. Rangaswamy, M. A. M.Bourke, S. Krishnamurthy, Assessment of the fiber/matrix interface bond strength in SiC/Ti-6Al-4V composites, Materials Science and Engineering A, 259, 220(1999)
8 J. A. Sherwood, H. M. Quimby, Micromechanical modeling of damage growth in titanium based metal-matrix composites, Computers & Structures, 56(2-3), 505(1995)
doi: 10.1016/0045-7949(95)00040-N
9 M. P. Thomas, M. R. Winstone, Longitudinal yielding behavior of SiC-fibre-reinforced titanium-matrix composites , Composites Science and Technology, 59, 297(1999)
doi: 10.1016/S0266-3538(98)00072-4
10 A. Brunet, R. Valle, A. Vassel, Intermetallic TiAl-based matrix composites: investigation of the chemical and mechanical compatibility of a protective coating adapted to an alumina fibre, Acta Materialia, 48, 4763(2000)
doi: 10.1016/S1359-6454(00)00285-8
11 HUANG Bin, Study on the interface, microstructure and property of SiCf/Ti composites, Dissertation for the degree of PhD, Northwestern Polytechnical University(2010)
(黄斌, SiCf/Ti基复合材料的界面及组织性能研究, 博士学位论文, 西北工业大学(2010))
12 S. Schuler, B. Derby, M. Wood, Matrix flow and densification during the consolidation of matrix coated fibers, Acta Materialia, 48, 1247(2000)
doi: 10.1016/S1359-6454(99)00428-0
13 Z. J. Ma, Y. Q. Yang, X. H. Lu, X. Luo, Y. Chen, The effect of matrix creep property on the consolidation process of SiC/Ti-6Al-4V composite, Materials Science and Engineering A, 433, 343(2006)
doi: 10.1016/j.msea.2006.06.038
14 R. J. Zhang, Y. Q. Yang, W. T. Shen, Preparation and tensile test of SiC fiber fabricated by three-stage chemical vapour deposition, J Inorg Mater, 25(8), 840(2010)
doi: 10.3724/SP.J.1077.2010.00840
15 LOU Juhong, YANG Yanqing, LUO Xian, CHEN Yan, Finite element analysis for effects of fiber arrays on the residual stress of SiC fiber reinforced Ti-matrix composite, Rare metal materials and engineering, 40(2), 243-246(2011)
(娄菊红, 杨延清, 罗贤, 陈彦, 纤维排布方式对SiC/Ti材料残余应力影响的有限元分析, 稀有金属材料与工程, 40(2), 243(2011))
16 LUO Xian, Study on the fabrication and properties of SiC fiber reinforced copper-matrix composites, Dissertation for the degree of PhD, Northwestern Polytechnical University(2008)
(罗贤, SiC纤维增强Cu基复合材料的制备及性能研究, 博士学位论文, 西北工业大学(2008))
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!