Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (11): 807-813    DOI: 10.11901/1005.3093.2015.274
Current Issue | Archive | Adv Search |
Effect of Surface Modification and Hybridization of UHMWPE Fibers on Performance of their Composites with Epoxy Resin
Jun QIU(),Zengyi WANG,Qian SUN,Xueyuan GAO
Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Cite this article: 

Jun QIU,Zengyi WANG,Qian SUN,Xueyuan GAO. Effect of Surface Modification and Hybridization of UHMWPE Fibers on Performance of their Composites with Epoxy Resin. Chinese Journal of Materials Research, 2015, 29(11): 807-813.

Download:  HTML  PDF(2828KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ultra high molecular weight polyethylene (UHMWPE) fibers possess outstanding properties such as high tensile strength and low density. However, their low surface polarity and poor heat resistance restrict the application of UHMWPE fibers as a reinforcing material for high performance composites. These shortcomings of UHMWPE fibers can be overcome by ultraviolet (UV) assisted grafting treatment and hybridization with aramid fibers. Results show that UHMWPE fibers could firstly be modified by means of an UV radiation assisted one step grafting process with acetone as solvent and acrylic acid as monomers, then the mechanical properties of composites of epoxy resin with the modified UHMWPE fibers was greatly enhanced; with the increasing monomer content in the acetone solvent, the tensile strength of UHMWPE fibers/epoxy resin composites increased obviously, while there was no significant change of flexural strength and impact strength. In order to further improve the heat resistance of UHMWPE fibers/epoxy resin composites, UHMWPE fibers were hybridized with aramid fibers and then the hybrid fibers were used as reinforcing material to produce hybrid fibers/epoxy resin composites. As a result, the deformation of the hybrid fibers/epoxy resin composites decreased by 66.7% at 90℃ compared to that of UHMWPE fibers/epoxy resin composites. The result proves that the pre-hybridization of UHMWPE fibers is an effective means to enhance the heat resistance of UHMWPE fibers/epoxy resin composites .

Key words:  composites      UV grafting      hybridization      UHMWPE fibers      aramid fibers     
Received:  07 May 2015     
Fund: *Supported by Shanghai Programs for Science and Technology Development No. 12521102204.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.274     OR     https://www.cjmr.org/EN/Y2015/V29/I11/807

Solvent Grafting monomer Appearance grafting efficiency/% Impact strength /MPa Flexural strength /MPa
None - - 61.93 136.37
C2H5OH AA 5.16 186.54 127.02
CH3COCH3 AA 6.41 103.54 179.56
C2H5OH AM 2.68 98.84 58.74
CH3COCH3 AM 4.32 99.19 135.77
Tab1e 1  Influence of different solvent and grafting monomer on impact strength and flexural strength of composites
Fig.1  Infrared spectrum of the UHMWPE treated by different methods (a) ntreated (b) treated by AA
Fig.2  Reaction mechanism of UHMWPE fibers grafted by AA
Fig.3  Effect of the concentration of acrylic on the tensile strength and elongation at break of UHMWPE fiber multifilament reinforced composites
Fig.4  Stress-strain images of UHMWPE fiber multifilament reinforced composites treated by different concentration of acrylic, (a) untreated, (b) 20%, (c) 40%, (d) 50%
Fig.5  Surface morphology of UHMWPE fibers (a) untreated and (b) treated
Fig.6  Effect of the concentration of acrylic on the flexural strength and impact strength of composites
Fig.7  Impact fracture morphology of UHMWPE/Epoxy composites (a) untreated and (b) treated
Fig.8  Mechanical properties of Aramid/UHMWPE fibers composites and UHMWPE fibers composites
Fig.9  The deformation of composites with different fibers
Fig.10  Impact fracture morphology of different fiber composites(a) UHMWPE and (b) Aramid/UHMWPE
1 GUO Changsheng,YANG Jianzhong, AN Hongyu, The research of ultra-high molecular weight polyethylene fiber's modification, Hi-Tech Fiber & Application, 39(6), 21(2014)
1 (郭昌盛, 杨建忠, 安红玉, 超高相对分子质量聚乙烯纤维改性方法, 高科技纤维与应用, 39(6), 21(2014))
2 LING Rihui,DU Ya, MU Yi, JIANG Zhirong, ZHAO Guoliang, Effect of ultra-violet irradiation on structure and properties of ultra-high molecular weight polyethylene fibers, Polymer Materials Science and Engineering, 30(8), 85(2014)
2 (梁日辉, 都 亚, 牧 艺, 江志荣, 赵国樑, 紫外光辐照对超高分子量聚乙烯纤维结构与性能的影响, 高分子材料科学与工程, 30(8), 85(2014))
3 WANG Fei,LIU Lichao, XUE Ping, Research progress in preparation technology of ultra-high molecular weight polyethylene fiber, Plastics, 43(5), 31(2014)
3 (王 非, 刘丽超, 薛平, 超高分子量聚乙烯纤维制备技术进展, 塑料, 43(5), 31(2014))
4 M. M. Xiao, J. R. Yu, J. J. Zhu, L. Chen,Effect of UHMWPE concentration on the extracting, drawing and crystallizing properties of gel fibers, Journal of Materials Science, 46(17), 5690(2011)
5 Z. Li, W. Zhang, X.W. Wang,Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization, Applied Surface Science, 257(17), 7600(2011)
6 CHEN Zili,YU Junrong, LIU Zhaofeng, TAN Guanhong, Effect of UV irradiation process on the structure and properties of UHMWPE fibers, Polymer Materials Science And Engineering, 17(3), 62(2001)
6 (陈自力, 于俊荣, 刘兆峰, 谈冠红, 紫外光辐照交联对超高相对分子质量聚乙烯纤维结构和性能的影响, 高分子材料科学与工程, 17(3), 62(2001))
7 LUO Yuxiang,WU Yue, HU Fuzeng, UV-photo initiated grafting treatment of UHMWPE fibers, Acta Materiae Compositae Sinica, 18(4), 29(2001)
7 (骆玉祥, 吴 越, 胡福增, 超高分子量聚乙烯纤维紫外接枝处理, 复合材料学报, 18(4), 29(2001))
8 LI Zhi,ZHANG Wei, WU Xiangyang, Surface modification of ultra high molecular weight polyethylene fibers via the UV-induced graft polymerization, New Chemical Materials, 39(11), 46(2011)
8 (李 志, 张 炜, 吴向阳, 超高分子量聚乙烯纤维表面紫外接枝聚合改性研究, 化工新型材料, 39(11), 46(2011))
9 ZHU Wuhuang,SU Ping, ZHOU Kechao, Development of ultra-high molecular weight polyethylene fibers and its composites, Materials Review, 19(3), 66(2005)
9 (朱武黄, 苏 萍, 周科朝, 超高分子量聚乙烯纤维及其复合材料的研究现状, 材料导报, 19(3), 66(2005))
10 Kiranh Kale,Shitals Palaskar, Plasma technology for wettability, dyeability and function finish of polyester and nylon fabrics, BTRA Scan, 43(1), 18(2013)
11 Choonki Na,Hyunju Park, Preparation of acrylic acid arafted polypropylene nonwoven fabric by photoinduced graft polymerization with preabsorption of monomer solution, Journal of Applied Polymer Science, 114(1), 387(2009)
12 LI Tongqi,WANG Chengyang, Effect factors and improving methods of the properties of aramid fiber and its Composite, Polymer Materials Science And Engineering, 19(5), 5(2003)
12 (李同起, 王成扬, 影响芳纶纤维及其复合材料性能的因素和改善方法, 高分子材料科学与工程, 19(5), 5(2003))
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!