Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (5): 321-324    DOI: 10.11901/1005.3093.2013.880
Current Issue | Archive | Adv Search |
Thermal Conductivity of Cu/Diamond Composites Produced by High Pressure Liquid Infiltration Method
Jinshan HE,Hailong ZHANG,Yang ZHANG,Jianwei LI,Xitao WANG()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

Jinshan HE,Hailong ZHANG,Yang ZHANG,Jianwei LI,Xitao WANG. Thermal Conductivity of Cu/Diamond Composites Produced by High Pressure Liquid Infiltration Method. Chinese Journal of Materials Research, 2014, 28(5): 321-324.

Download:  HTML  PDF(2388KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cu/diamond composites containing 90% (volume fraction) diamond particles were prepared at 1200°C under a pressure of 5 GPa by high pressure liquid infiltration method, giving a measured thermal conductivity of 662 Wm-1K-1. The characterization of composites by means of SEM, EDS and XRD shows that the interfacial bonding of Cu/diamond is strong, and a transition layer exists between diamond and Cu. Besides, some diamond particles are found to be inter-connected. The Cu/diamond composites fabricated by this method exhibited a thermal conductivity far superior to those produced by other means.

Key words:  composites      thermal conductivity      high pressure liquid infiltration      Cu/diamond     
Received:  20 November 2013     
Fund: *Supported by the National Natural Science Foundation of China No. 51271017, and Fundamental Research Funds for the Central Universities No. FRF-TP-13-033A.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.880     OR     https://www.cjmr.org/EN/Y2014/V28/I5/321

Fig.1  Temperature processing graft for fabricating copper/diamond composites
Fig.2  XRD spectra of the copper/diamond composites
Fig.3  Surface microstructure of the copper/diamond composites (a) backscattered electron photograph, (b) SEM photograph, and (c) element line scan
Fig.4  SEM images of fractured surfaces of the copper/diamond composites: (a) low magnification, (b) high magnification
Fig.5  Element line scanning results for interface of the copper/diamond composites: (a) the detected area of EDS, (b) the distribution of elements
Fig.6  Comparison of thermal conductivity for copper/diamond composites fabricated with different methods. The dotted line represents the value predicted by the H-J model. LI: liquid infiltration, HP: hot pressing, SPS: spark plasma sintering, HPLI: high pressure liquid infiltration
1 N. Q. Vo, S. W. Chee, D. Schwen, X. Zhang, P. Bellon, R. S. Averback,Microstructural stability of nanostructured Cu alloys during high-temperature irradiation, Scripta Materialia, 63, 929(2010)
2 K. Yoshida, H. Morigami,Thermal properties of diamond/copper composite material, Microelectronics Reliability, 44, 303(2004)
3 K. Chu, C. C. Jia, H. Guo, W. S. Li,On the thermal conductivity of Cu-Zr/diamond composites, Material and Design, 45, 36(2013)
4 X. Y. Shen, X. B. He, S. B. Ren, H. M. Zhang, X. H. Qu,Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites, Journal of Alloys and Compounds, 529, 134(2012)
5 ZHANG Yujun,TONG Zhensong, SHEN Zhuoshen, The copper/diamond composites fabricated by SPS method, Journal of University of Science and Technology Beijing, 31(8), 1019(2009)
5 (张毓隽, 童震松, 沈卓身, SPS方法制备铜/金刚石复合材料, 北京科技大学学报, 31(8), 1019(2009))
6 D. P. H. Hasselman, L. F. Johnson,Effective thermal conductivity of composites with interfacial thermal barrier resistance, Journal of Composite Materials, 21, 508(1987)
7 E. T. Swartz, R. O. Pohl,Thermal boundary resistance, Review of Modern Physics, 61, 605(1989)
8 J. S. He, H. L. Zhang, Y. Zhang, Y. M. Zhao, X. T. Wang, Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature-high pressure method, Physica Status Solidi A, DOI: 10.1002/pssa.201330237.
9 T. Clyne, P. Withers, An Introduction to Metal Matrix Composites, 1st edition, (Cambridge, Cambridge University Press, 1993)
10 K. Chu, C. C. Jia, H. Guo, W. S. Li,Microstructure and thermal conductivity of Cu-B/diamond composites, Journal of Composite Materials, 47, 2945(2013)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[3] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[4] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[5] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] HUANG Huan, ZHANG Xuntao, YANG Shangke, XIAO Liuxin, ZHANG Zhaoxin, YAN Lei, LIN Hailan, BIAN Jun, CHEN Daiqiang. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent[J]. 材料研究学报, 2022, 36(6): 416-424.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!