Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (4): 300-307    DOI: 10.11901/1005.3093.2013.701
Current Issue | Archive | Adv Search |
Isothermal Crystallization Kinetics of a Novel Halogen-free Intumescent Flame-retardant Low-density Polyethylene
Lingang LU1,**(),Wei JIANG2,Shoushen YANG3,Xiaonan XU3,Dawei WANG2,Jing JIN3
1. Department of Science and Technology, Chinese People's Armed Police Force Academy, Langfang 065000
2. Graduates Forces, Chinese People's Armed Police Force Academy, Langfang 065000
3. Department of Fire Protection Engineering, Chinese People's Armed Police Force Academy, Langfang 065000
Cite this article: 

Lingang LU,Wei JIANG,Shoushen YANG,Xiaonan XU,Dawei WANG,Jing JIN. Isothermal Crystallization Kinetics of a Novel Halogen-free Intumescent Flame-retardant Low-density Polyethylene. Chinese Journal of Materials Research, 2014, 28(4): 300-307.

Download:  HTML  PDF(848KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel halogen–free composite of intumescent flam retardant (IFR)-/ low-density polyethylene (LDPE) was prepared by melt blending LDPE and IFR,, the later consisted of 1, 3, 5-tri (5, 5-dibromomethyl-1, 3-dioxaphosphorinanyl-2-oxy) benzene(FR)and polyphosphate (APP ). The flame retardancy of IFR/LDPE composite was examined by using oxygen index meter. The influence of IFR on the non-isothermal crystallization kinetics of LDPE was investigated by differential scanning calorimeter. The crystallization characteristics of the composite were analyzed by methods of Jeziorny, Ozawa and Mo Zhi-shen. The activation energy of the LDPE and IFR/LDPE were calculated by the Kissinger and Takhor methods. The results show that the limited oxygen index value of IFR/LDPE could reach 31.7% and the total crystallization rate of IFR/LDPE decreased with the addition of 25 %(mass fraction)IFR. Therefore, the addition of IFR might bring a negative effect on the crystallization process of LDPE.

Key words:  inorganic nonmetallic materials      intumescent flame retardant (IFR)      LDPE      flame retardancy      DSC      non-isothermal crystallization kinetics     
Received:  23 September 2013     
Fund: *Supported by the Natural Science Foundation of Hebei Province of China No.E2012507008.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.701     OR     https://www.cjmr.org/EN/Y2014/V28/I4/300

Sample LDPE /% FR/% APP/% LOI/% EFF UL94-FH
LDPE 100 0 0 17.5 0 FH-3-14.5
IFR/LDPE 75 15 10 31.7 2.43 FH-1
Table 1  Influence of the content of IFR on flame retardancy of LDPE
Sample Tensile strength/MPa Break elongation/% Impact strength/kJm-2 Bending strength/MPa Bending modulus/MPa
LDPE 24.27 35.91 88.16 25.98 8.26
IFR/LDPE 12.94 29.21 67.61 20.25 3.84
Table 2  Mechanical experimental results of pure LDPE and IFR/LDPE composite
Fig.1  Non-isothermal crystallization DSC curves for LDPE and IFR/LDPE blends (a) LDPE, (b) IFR/LDPE
Sample R/℃min-1 Ti Te T P /℃ Δ H P /Jg-1 X t o t a l /%
LDPE 2.5 99.8 92.9 96.75 65.10 23.33
5.0 98.2 89.6 94.67 65.95 23.64
7.5 96.8 86.1 92.75 68.74 24.64
10.0 96.0 84.2 91.67 66.55 23.85
12.5 95.3 82.4 91.25 66.75 23.93
IFR/LDPE 2.5 104.6 94.7 98.92 40.45 19.33
5.0 103.5 91.6 97.00 40.88 19.54
7.5 102.1 89.5 96.00 42.29 20.21
10.0 101.5 87.5 94.83 40.11 19.17
12.5 100.7 85.1 94.04 45.28 21.64
Table 3  Parameters of LDPE and IFR/LDPE samples during non-isothermal crystallization process
Fig.2  Xc(t)-t curves of LDPE and IFR/LDPE at various cooling rate (a) LDPE, (b) IFR/LDPE
Fig.3  Xc(t) vs temperature curves of LDPE and IFR/LDPE at various cooling rate (a) LDPE, (b) IFR/LDPE
Sample R/℃min-1 t 1 / 2 /min Z t Z c n r
LDPE 2.5 1.18 0.45 0.73 2.89 0.9997
5.0 0.78 1.62 1.10 3.48 0.9942
7.5 0.67 2.78 1.15 3.55 0.9954
10.0 0.57 6.63 1.21 4.01 0.9985
12.5 0.45 19.4 1.27 4.26 0.9948
IFR/LDPE 2.5 2.15 0.08 0.37 2.82 0.9994
5.0 1.40 0.22 0.74 3.44 0.9993
7.5 1.04 0.58 0.93 3.68 0.9978
10.0 0.77 1.17 1.02 3.95 0.9931
12.5 0.57 4.07 1.12 3.10 0.9948
Table 4  Nonisothermal crystallization kinetic parameters for LDPE and IFR/LDPE composites by Jeziorny method
Fig.4  ln[-ln(1-Xc(t))]-lnt curves of LDPE and IFR/LDPE at various cooling rate (a) LDPE, (b) IFR/LDPE
Fig.5  ln[-ln(1-Xc(t))] vs lnR curves of LDPE and IFR/LDPE at various cooling rate (a) LDPE, (b) IFR/LDPE
Fig.6  lnR vs lnt curves of LDPE and IFR/LDPE at various cooling rate (a) LDPE, (b) IFR/LDPE
Sample X c (t)/% F(T) a r
LDPE 10 0.80 2.36 0.9915
30 2.35 1.60 0.9984
50 3.24 1.65 0.9995
70 4.70 1.69 0.9973
90 5.88 1.51 0.9953
IFR/LDPE 10 2.93 1.25 0.9971
30 5.19 1.24 0.9941
50 6.59 1.22 0.9944
70 7.94 1.20 0.9973
90 10.29 1.21 0.9937
Table 5  Nonisothermal crystallization kinetic parameters for LDPE and IFR/LDPE composites by Mo method
Fig.7  Activation energy of non-isothermal crystallization curves of LDPE and IFR/LDPE by Kissinger and Takhor method (a) Kissinger method, (b) Takhor method
Sample E 1 /kJmol-1 r 1 E 2 /kJmol-1 r 2
LDPE 316.29 0.9952 310.19 0.9950
IFR/LDPE 382.27 0.9959 376.12 0.9958
Table 6  The activation energy of non-isothermal crystallization of the LDPE and IFR/LDPE composites by Kissinger and Takhor method
1 S. Bellayer, E. Tavard, S. Duquesne, A. Piechaczyk, S. Bourbigot,Mechanism of intumescence of a polyethylene/calcium carbonate/stearic acid system, Polymer Degradation and Stability, 94(5), 797(2009)
2 C. S. Chou, S. H. Lin, C. I. Wang,Preparation and characterization of the intumescent fire retardant coating with a new flame retardant, Advanced Powder Technology, 20(2), 169(2009)
3 H. Y. Ma, L. F. Tong, Z. B. Xu, Z. P. Fang,Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites, Applied Clay Science, 42(1-2), 238(2008)
4 P. Zhang, Y. Hu, L. Song, H. D. Lu, J. Wang, Q. Q. Liu,Synergistic effect of iron and intumescent flame retardant on shape-stabilized phase change material, Thermochimica Acta, 487(1-2), 74(2009)
5 J. W. Gu, G. C. Zhang, S. L. Dong, Q. Y. Zhang, J. Kong,Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings, Surface & Coatings Technology, 201(18), 7835(2007)
6 Y. L. Mi, X. Y. Chen, Q. P. Guo,Bamboo fiber-reinforced polypropylene composites: Crystallization and interfacial morphology, Journal of Applied Polymer Science, 64, 1267(1997)
7 Y. T. Shieh, M. S. Lee, S. A. Chen,Crystallization behavior, crystal Transformation, and morphology of polypropylene/polybutene blends, Polymer, 42(9), 4439(2001)
8 WANG Zhongqiang,HU Guosheng, HOU Xiumiao, Study on isothermal crystallization kinetics of in-situ compatibilized PA6/PE-HD blends, China Plastics, 25(4), 22(2011)
8 (王忠强, 胡国胜, 周秀苗, 原位增容 PA6/PE-HD 共混物的等温结晶动力学研究, 中国塑料, 25(4), 22(2011))
9 LI Bo,JI Tiezheng, LI Jia, DING Yang, Investigation of crystallization behavior of MWNTs/HDPE composite, China Plastics Industry, 39(2), 63(2011)
9 (李 博, 季铁正, 李 佳, 丁 阳, MWNTs/HDPE 复合材料的结晶行为研究, 塑料工业, 39(2), 63(2011))
10 DI Mingwei,LIU Yang, ZHANG Yanhua, GU Jiyou, The thermal oxidation aging pyridyl-functionalized SBS-(II) surface elemental analysis, Polymer Materials Science and Engineering, 26(7), 83(2010)
10 (邸明伟, 刘 杨, 张彦华, 顾继友, 极性 SBS 的热氧老化—(II)表面元素分析, 高分子材料科学与工程, 26(7), 83(2010))
11 MA Zhiling,ZHANG Ziqiang, DAI Cun, onisothermal crystallization and melting behavior of intumescent flameretardant polypropylene, Journal of Hebei University(Natural Science Edition), 25(6), 604(2005)
11 (马志领, 张自强, 戴 存, 膨胀型阻燃聚丙烯的熔融及非等温结晶行为, 河北大学学报(自然科学版), 25(6), 604(2005))
12 MO Zhishen,A method for the non-isothermal crystallization kinetics of polymers, Acta Polymerica Sinica, 7, 656(2008)
12 (莫志深, 一种研究聚合物非等温结晶动力学的方法, 高分子学报, 7, 656(2008))
13 A. Jeziorny,Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethyleneterephthalate) determined by DSC, Polymer, 19(10), 1142(1978)
14 T. Ozawa,Kinetics of non-isothermal crystallization, Polymer, 12(3), 150(1971)
15 T. X. Liu, Z. S. Mo, S. E. Wang, H. F. Zhang,Nonisothermal melt and cold crystallization kinetics of poly(arylether ether ketone ketone), Polymer Engineering and Science, 37(3), 568(1997)
16 LU Lingang,YANG Shousheng, ZHANG Yan, HUANG Xiaodong, Synthesis and thermal decomposition kinetics of novel flame retardant 1, 3, 5-Tris(5, 5-dimethyl-1, 3-dioxa-2-oxophosphorinanyl-2-oxy)benzene, Acta Chimica Sinica, 67(14), 1695(2009)
16 (卢林刚, 杨守生, 张 燕, 黄晓东, 新型磷系阻燃剂1,3, 5-三(5, 5-二甲基-1, 3-二氧杂-2-氧代己内磷酰基-2-氧)苯的合成及热分解动力学研究, 化学学报, 67(14), 1695(2009))
17 H. E. Kissinger,Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Nat. Bur. Stand., 57(4), 217(1956)
18 B. Lehmann, J. Karger-Kocsis,Isothermal and non-isothermal crystallization kinetics of PCBT and PBT polymers as studied by DSC, Journal of Thermal Analysis and Calorimetry, 95(1), 1(2009)
[1] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[2] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[3] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[4] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[5] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[6] PAN Ying, ZHAO Hongting. Preparation of Halloysite Based Layer-by-Layer Coating on Flexible Polyurethane Foam and Its Performance of Flame Retardant and Smoke Suppression[J]. 材料研究学报, 2021, 35(6): 449-457.
[7] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[8] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[9] XU Chunping, CHEN chunyue, ZHANG yonghang, Gong wei, BAN daming. Flame Retard Modification of Vinyl Ester Resin with Phosphorous Polymer Type Flame Retardant[J]. 材料研究学报, 2021, 35(11): 843-849.
[10] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
[11] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[12] TANG Yang. Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 875-880.
[13] Li YANG,Zhiyuan TANG,Tengteng LI,Qiwei DUAN,Jiali HU,Sufang ZHANG,Zhaoqiang ZHENG. Preparation and Photovoltaic Performance of Novel Ruthenium Complex and Its Self-assembly Membrane[J]. 材料研究学报, 2019, 33(8): 614-620.
[14] Yongjie CUI,Yong LIU,Shuai PENG,Keqing HAN,Muhuo YU. Preparation and Property of SiBN Ternary Ceramic Fibers Prepared by Polyborosilazane-Derived Method[J]. 材料研究学报, 2019, 33(2): 155-160.
[15] Hongxia JING, Mingxing GAO, Xingmei WANG, Wangjun PEI, Weizhou JIAO. Preparation and Properties of Ce-doped Cobalt Ferrite[J]. 材料研究学报, 2018, 32(6): 449-454.
No Suggested Reading articles found!