Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (6): 572-576    DOI:
论文 Current Issue | Archive | Adv Search |
Effects of surface treatment of VGCF on the mechanical and thermal properties of the VGCF/SMPU composites
FU Yaqin1; HAN Chunshao1;   NI Qingqing2;   ZHU Yaofeng 1;  DING Yanjie1
1.Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education; Zhejiang Sci-Tech University; Hangzhou 310018
2.Dept. of Functional Machinery & Mechanics; Shinshu University; Ueda 386-8567; Japan
Cite this article: 

FU Yaqin HAN Chunshao NI Qingqing ZHU Yaofeng DING Yanjie. Effects of surface treatment of VGCF on the mechanical and thermal properties of the VGCF/SMPU composites. Chin J Mater Res, 2009, 23(6): 572-576.

Download:  PDF(1015KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Surface modification of vapor grown carbon fiber (VGCF) was performed with the two-step method. VGCF/shape memory polyurethane (SMPU) composites were prepared via a solutionmixing method thereafter. The dispersion of VGCF in SMPU and VGCF-matrix interfacial adhesion were observed through scanning electron microscope (SEM). Moreover, the mechanical and thermal properties of the VGCF/SMPU composites were investigated. The results show that the dispersion and interfacial adhesion for the two-step surface modified VGCF are greatly improved than that of the pristine VGCF; The composites prepared with two-step surface modified VGCF have much better tensile strength and modulus reinforcement than that with the pristine VGCF. The elongation at break of the composites are all reduced after compounding of VGCF and SMPU, while the surface modified VGCF reinforced composites show higher elongation at break comparing with the pristine VGCF reinforced composites; The two-step surface modified VGCF is propitious to improve the thermal stability of the composites comparing with the pristine VGCF.

Key words:  composites      VGCF/SMPU composites      surface modification      vapor grown carbon fiber      shape memory polyurethane     
Received:  16 January 2009     
ZTFLH: 

TQ327.3

 
Fund: 

Support by the Program for Changjiang Scholars and Innovative Research Team in University No.IRT0654.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I6/572

1 S.Ota, Current status of irradiated heat shrinkable tubing, Radiation Physics and Chemistry, 18(1-2), 81(1981)
2 S.Hayashi, P.Kapadia, E.Ushioda, Room-temperaturefunctional shape-memory polymers, Plastics Engineering, 51(2), 29(1995)
3 C.Liang, C.A.Rogers, E.Malafeew, Investigation of shape memory polymers and their hybrid composites, Journal  of Intelligent Material Systems and Structures, 8(4), 380(1997)
4 T.Takahashi, N.Hayashi, S.Hayashi, Structure and properties of shape-memory polyurethane block copolymers, Journal of Applied Polymer Science, 60(7), 1061(1996)
5 B.S.Lee, B.C.Chun, Y.C.Chung, I.S.Kyung, J.W.Cho, Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect, Macromolecules, 34(18), 6431(2001)
6 CHEN Xiaohong, SHEN Zengmin, Study on the physical properties of vapor grown carbon fiber and its reinforced composites, Carbon Technigues, 104(6), 18(1999)
(陈晓红, 沈曾民, 气相生长炭纤维的物理性能及其作为复合材料增强体的研究, 炭素技术,  104(6), 18(1999))
7 GAO Lian, LIU Yangqiao, Dispersion and surface modification of carbon nanotubes, Bulletin of the Chinese Ceramic Society, 34(5), 114(2005)
(高濂, 刘阳桥, 碳纳米管的分散及表面改性, 硅酸盐通报,  24(5), 114(2005))
8 Xia Hesheng, Song Mo, Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites, Journal of Materials Chemistry, 16(19), 1843(2006)
9 S.T.Huxtable, D.G.Cahill, S.Shenogin, L.Xue, R.Ozisik, P.Barone, M.Usrey, M.S.Strano, G.Siddons, M.Shim, P.Keblinski, Interfacial heat flow in carbon nanotube suspensions, Nature Materials, 2(11), 731(2003)

[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[6] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[7] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[8] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[9] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[11] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[12] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[13] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[14] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[15] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
No Suggested Reading articles found!