Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (6): 473-480    DOI: 10.11901/1005.3093.2017.634
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Property of Friction Stir Weld Joints of Dissimilar Al-alloys 5083 and 6061
Hongliang WANG1, Xianghao ZENG2,3, Xinmeng ZHANG1, Qiao SHANG2, Peng XUE2(), Dingrui NI2, Zongyi MA2
1 CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

Hongliang WANG, Xianghao ZENG, Xinmeng ZHANG, Qiao SHANG, Peng XUE, Dingrui NI, Zongyi MA. Microstructure and Mechanical Property of Friction Stir Weld Joints of Dissimilar Al-alloys 5083 and 6061. Chinese Journal of Materials Research, 2018, 32(6): 473-480.

Download:  HTML  PDF(9563KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Sheets of Al-alloys 5083 and 6061 of 6 mm in thickness were subjected to friction stir welding (FSW) with different welding parameters. The effect of welding parameters on the microstructure and mechanical property of the FSW joints were investigated. Results show that FSW joints with high quality could be produced by controlling welding parameters, and a high joint strength coefficient of 85% was obtained. Dynamic recrystallization took place in the nugget zones (NZs) with fine and equiaxed grains generated, and the grain size increased with the increasing rotation rate; usually the grain size of 5083 Al in the NZ was smaller than that of 6061Al. The heat-affected zones (HAZ) of 6061 Al side were the low hardness zones in all of the FSW joints, and the value of low hardness increased with the increasing rotation rate. It is found that the fracture paths corresponded well with the lowest hardness distribution profiles in the joints and the ultimate tensile strength increased with the increasing of the rotation rate.

Key words:  Al alloys      friction stir welding      microstructure      mechanical property     
Received:  23 October 2017     
ZTFLH:  TG457  
Fund: Supported by National Natural Science Foundation of China (Nos. 51331008 & U1760201)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.634     OR     https://www.cjmr.org/EN/Y2018/V32/I6/473

Si Fe Cu Mn Mg Al
5083Al 0.076 0.13 0.032 0.63 4.34 Bal.
6061Al 0.691 0.299 0.212 0.113 1.13 Bal.
Table 1  Chemical composition of 5083 and 6061Al alloys (mass fraction, %)
Fig.1  Microstructure of various FSW joints (a) 400-100, (b) 800-100, (c) 1200-100;(d) 1600-100; (e) 2000-100; (NZ—nugget zone, TMAZ—thermo-mechanically affected zone, HAZ—heat-affected zone, AS—advancing side, RS—retreating side)
Fig.2  Microstructure of various FSW joints in different zones: the NZ in (a) 400-100; (b) 1200-100; (c) 2000-100;the TMAZ of advancing side (AS) in (d) 400-100; (e) 1200-100;(f) 2000-100; the HAZ of AS in (g) 400-100; (h) 1200-100; (i) 2000-100
Fig.3  Electron back-scattered diffraction (EBSD) maps of NZ in various FSW joints (a) 400-100, (b) 1200-100, (c) 2000-100
Fig.4  Grain size of 5083 and 6061Al in NZ under various parameters
Fig.5  Typical bright-field TEM images of the 6061Al and the HAZs of AS in the FSW joints (a) 6061Al, (b) 400-100, (c) 1200-100, (d) 2000-100
Fig.6  Microhardness profiles of the FSW joints under various parameters
Sample δb/MPa δ/% Fracture zone
5083 Al-alloy 367.2±0.2 9.5±0.3
6061 Al-alloy 245.4±0.3 26.0±0.5
400-100 196.3±1.8 9.6±0.7 HAZ at 6061 size
800-100 198.5±2.4 9.8±0.9 HAZ at 6061 size
1200-100 200.2±2.3 9.3±0.6 HAZ at 6061 size
1600-100 206.5±3.9 9.1±1.1 HAZ at 6061 size
2000-100 208.8±1.0 8.9±0.3 HAZ at 6061 size
Table 2  Tensile property of BM and dissimilar FSW joints under various parameters at room temperature
Fig.7  Samples of various FSW joints after tensile test (a, b) 400-100, (c, d) 800-100, (e, f) 1200-100, (g, h) 1600-100, (i, j) 2000-100
Fig.8  Fractographs of the dissimilar FSW joints (a) fracture macroscopic photograph of sample 400-100, (b) SEM photograph of sample 400-100, (c) fracture in sample 400-100;(d) the crack in the NZ of sample 2000-100
[1] Edwards G A, Stiller K, Dunlop G L, et al.The precipitation sequence in Al-Mg-Si alloys[J]. Acta Mater., 1998, 46: 3893
[2] Kamp N, Gao N, Starink M J, et al.Influence of grain structure and slip planarity on fatigue crack growth in low alloying artificially aged 2xxx aluminium alloys[J]. Int. J. Fatigue, 2007, 29: 869
[3] Peng D, Shen J, Tang Q, et al.Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints[J]. Int. J. Min. Met. Mater., 2013, 20: 259
[4] Lee W B, Yeon Y M, Jung S B.Mechanical properties related to microstructural variation of 6061 Al alloy joints by friction stir welding[J]. Mater. Trans., 2004, 45: 1700
[5] Wang K S, Zhang X L, Wang X H, et al.Comparison of fatigue properties between friction stir welds and TIG welds for Al alloy[J]. Chin. J. Mater. Res., 2009, 23(1): 73王快社, 张小龙, 王训宏等. 搅拌摩擦与氩弧焊铝合金接头疲劳性能的比较[J]. 材料研究学报, 2009, 23(1): 73
[6] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, 50R: 1
[7] Wang B B, Chen F F, Liu F, et al.Enhanced mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling[J]. J. Mater. Sci. Technol., 2017, 33: 1009
[8] Xue P, Zhang X X, Wu L H, et al.Research progress on friction stir welding and processing[J]. Acta Metall. Sin, 2016, 52: 1222薛鹏, 张星星, 吴利辉等. 搅拌摩擦焊接与加工研究进展[J]. 金属学报, 2016, 52: 1222
[9] Ma Z Y.Friction stir processing technology: A review[J]. Metall. Mater. Trans., 2008, 39A: 642
[10] Zhang Z, Zhang H W.Effect of process parameters on quality of friction stir welds[J]. Chin. J. Mater. Res., 2006, 20: 504张昭, 张洪武. 焊接参数对搅拌摩擦焊接质量的影响[J]. 材料研究学报, 2006, 20: 504
[11] Liu F C, Ma Z Y.Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy[J]. Metall. Mater. Trans., 2008, 39A: 2378
[12] Chentouf S M, Belhadj T, Bombardier N, et al.Influence of predeformation on microstructure evolution of superplastically formed Al 5083 alloy[J]. Int. J. Adv. Manuf. Technol., 2017, 88: 2929
[13] He J, Ling Z M, Li H M.Effect of tool rotational speed on residual stress, microstructure, and tensile properties of friction stir welded 6061-T6 aluminum alloy thick plate[J]. Int. J. Adv. Manuf. Technol., 2016, 84: 1953
[14] Ahmadnia M, Shahraki S, Kamarposhti M A.Experimental studies on optimized mechanical properties while dissimilar joining AA6061 and AA5010 in a friction stir welding process[J]. Int. J. Adv. Manuf. Technol., 2016, 87: 2337
[15] Palanivel R, Koshy Mathews P, Murugan N, et al.Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys[J]. Mater. Des., 2012, 40: 7
[16] Pourahmad P, Abbasi M.Materials flow and phase transformation in friction stir welding of Al 6013/Mg[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1253
[17] Gungor B, Kaluc E, Taban E, et al.Mechanical and microstructural properties of robotic Cold Metal Transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys[J]. Mater. Des., 2014, 54: 207
[18] Yazdipour A, Shafiei M A, Dehghani K.Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083[J]. Mater. Sci. Eng., 2009, 527A: 192
[19] Sauvage X, Dédé A, Mu?oz A C, et al.Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys[J]. Mater. Sci. Eng., 2008, 491A: 364
[20] Huang B S, Huang L P, Li H.Research status and development trend of dissimilar metals welding[J]. Mater. Rev., 2011, 25: 118黄本生, 黄龙鹏, 李慧. 异种金属焊接研究现状及发展趋势[J]. 材料导报, 2011, 25(12): 118
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[10] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[12] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[13] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[14] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
No Suggested Reading articles found!