Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (11): 811-818    DOI: 10.11901/1005.3093.2016.137
Orginal Article Current Issue | Archive | Adv Search |
Effect of Heat Input on Dynamic Tensile Deformation Behavior of Q550 Steel
Xiaotong GUO,Lei WANG(),Chenglei QIN,Xu YUAN
Key Lab for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819, China
Cite this article: 

Xiaotong GUO, Lei WANG, Chenglei QIN, Xu YUAN. Effect of Heat Input on Dynamic Tensile Deformation Behavior of Q550 Steel. Chinese Journal of Materials Research, 2016, 30(11): 811-818.

Download:  HTML  PDF(8316KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Q550 steel was welded by shielded metal arc welding with varying heat inputs, and then the microstructure of the weld joint was characterized, while the effect of strain rate on its mechanical behavior were examined. The results show that when the heat input below 18 kJ/cm, with the increasing heat input, acicular ferrite content of the fusion zone and the grain size of the heat affected zone increased. With the increasing strain rate, the elongation and tensile strength of the welded joint increased to different extents. With the increasing heat input, the depth of large dimples increased, while the area of small dimples decreased in the fractured surface. During high speed tension, the resistance to dislocation slip increased, however the propagating rate of dislocation slip far behind the increasing speed of load, which led to increase in yield strength and tensile strength with the increase of strain rate. With the increasing heat input, acicular ferrite content of fusion zone increased, which is the main reason for the increase of sensitivity of tensile property to strain rate.

Key words:  metalic materials      low alloy high strength steel      shielded metal arc welding      heat input      strain rate      deformationbehavior     
Received:  14 March 2016     
Fund: *Supported by National Training Program of Innovation and Entrepreneurship for Undergraduates No. 201510145041.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.137     OR     https://www.cjmr.org/EN/Y2016/V30/I11/811

C Si Mn P S Cr Ni Mo B
0.065 0.21 1.65 0.15 0.15 0.4 0.4 0.15 0.002
Table 1  Chemical compositions of Q550 steel (mass fraction, %)
C Mn Si P S Cr Ni Mo V Tensile strength Yield strength Elongation
Mass fraction, % δs/MPa δb/MPa A/%
- 1.00 0.80 - - 0.30 0.50 0.20 0.10 690 600 16
Table2  Chemical compositions and mechanical behavior of SMAW welding material's deposited metal
Power Current (A) Voltage (V) Welding speed (cm/min-1) Heat input (kJ/cm-1)
Low 140~150 16~20 10~12 15
High 160~180 16~20 12~14 18
Table 3  SMAW Heat Input’s Parameters
Fig.1  Size and sampling ways of tensile specimen (unit=mm)
Fig.2  Microstructure of Q550 steel
Fig.3  Microstructure of fusion zone in low heat input (fig. b, c and d are the microstructure of I, II and III) (a) surfacing layer of fusion zone, (b) microstructure of fusion zone, (c) trace of columnar rain-growth of fu sion zone, (d) grain refinement of fusion zone
Fig.4  Microstructure of heat affected zone in low heat input (a) coarse grained region, (b) fine grained region, (c) partial normalized zone
Fig.5  Microstructure of welded joint in different heat input (a) fusion zone in low heat input, (b) fusion zone in high heat input, (c) coarse grained region of heat affected zone in low heat input, (d) coarse grained region of heat affected zone in high heat input
Fig.6  Hardness distribution of welded joint
Fig.7  ynamic tensile stress strain curve and properties of Q550 steel
Fig.8  Dynamic tensile strength and ductility in different strain rate
Fig.9  Tensile stress strain curvesof welded joint for different heat input conditions with the strain rate of 102 s-1
Fig.10  Dynamic tensile strength and ductility under different heat input conditions (a) dynamic tensile strength, (b) ductility
Fig.11  SEM morphologies tensile fracture fiber zone of welded joint (heat input 15 kJ/cm) (a) 10-3 s-1, (b) 101 s-1, (c) 102 s-1, (d) 5×102 s-1
Fig.12  SEM morphologies tensile fracture fiber zone of welded joint (heat input 18 kJ/cm) (a) 10-3 s-1, (b) 101 s-1, (c) 102 s-1, (d) 5×102 s-1
1 SU Cheng, The research on high temperature mechanical properties of micro-alloyed Q345B structural steel,aster thesis,Inner Mongolia University(2011)
1 (宿成, 低合金高强度结构钢(Q345B)高温力学性能研究,硕士学位论文, 内蒙古科技大学(2011))
2 WEN Liangying, ZHANG Jian, CHEN Dengfu, DONG Lingyan, Optimization of secondary cooling water distribution system for high strength, low-alloy steel in continuous casting, Journal of Chongqing University, 31(9), 1008(2008)
2 (温良英, 张健, 陈登福, 董凌燕, 低合金高强度钢连铸二冷制度优化及试验, 重庆大学学报, 31(9), 1008(2008))
3 WANG Zubin, SHEN Rong, High strength low alloy steels for building steel construction, Steel Construction, 17(3), 47(2002)
3 (王祖滨, 沈荣, 建筑钢结构用低合金高强度钢, 钢结构, 17(3), 47(2002))
4 YIN Shike, WANG Yishan, Low Alloy Steel Welding Properties and Welding Materials (Beijing, Chemical Industry Press, 2014), p.2
4 (尹士科, 王移山, 低合金钢焊接特性及焊接材料 (北京, 化学工业出版社, 2014), p.2)
5 HUANG Wei, ZHANG Zhiqin, GAO Zhenfeng, HE Libo, XING Na, Development of high properties steel used for bridge abroad, World Bridge,(2),18(2011)
5 (黄维, 张志勤, 高真凤, 何立波, 邢娜, 国外高性能桥梁用钢的研发, 世界桥梁,(2), 18(2011))
6 J. Harding,Mechanical properties at high rates of strain,Proceedings of the Third Conference on the Mechanical Properties of Materials at High Rates of Strain(Oxford, 1984)p.81
7 Dhua S K, Mukerjee D, Sarma D S,Weldability and microstructural aspects of shielded metal are welded HSLA-100 steel plates, 42(3), 290(2002)
8 Spano G, Fond R W, Vandermeer R A, Matuszeski A, Microstructural changes in HSLA-100 steel therm ally cycled to simulate the heat affected zone during welding, Metallurgial and Materials Transactions A, 26A(12), 327(1995)
9 Shome M, Pgupta O, Mohanty O N, Effect of simulated thermal cycles on the microstructure of heat-affected zone in HSLA-100 and HSLA-100 steel plates, Metallurgial and Materials Transactions A, 35A(3), 985(2004)
10 FENG Wei, CAO Rui, PENG Yun, DU Wansheng, TIAN Zhiling, CHEN Jianhong, Microstructure and property of 980 MPa grade high strength steel welding joint's heat affected zone, Welding Institution, 30(7), 17(2009)
10 (冯伟, 曹睿, 彭云, 杜挽生, 田志凌, 陈剑虹, 980 MPa级高强钢焊接接头HAZ的组织和性能, 焊接学报, 30(7), 17(2009))
11 Zou Z D, LiY J, Yin S K, Microstructure impact toughness and TEM analysis in the CGHAZ of HQ130 high strength steel, J.Mater.Sci. Technol, 15(6), 555(1999)
12 ZHANG Baowei, WEI Jinshan, ZHANG Tianhong, An investigation on local brittle zone of 10Ni5CrMoV steel ater twice thermal cycle, Development and Application of Materials, 19(3), 23(2004)
12 (张宝伟, 魏金山, 张田宏, 10Ni5CrMoV钢二次焊接热循环局部脆化研究, 材料开发与应用, 19(3), 23(2004))
13 PENG Jixiang, ZHANG Tianhong, DU Yi, ZHANG Junxu, Effect of secondary welding thermal cycles on microstructure and tou-ghness of over-heated zone of ultrahigh strength steel, Development and Application of Materials, 21(3), 23(2006)
13 (彭冀湘, 张田宏, 杜义, 张俊旭, 二次焊接热循环对超高强钢过热区冲击性能的影响, 材料开发与应用, 21(3), 23(2006))
14 Robert L, Advanced synergic inverter power-source and wire-feed system for GMA-welding with integrated quality control system, Welding in the World, 34(4), 205(1994)
15 LIU Bin, Foundation of Metal Welding Technology (Beijing, National Defend Industy Press, 2012)p.85
15 (刘斌,金属焊接技术基础 ( 北京, 国防工业出版社, 2012)p.85)
16 ZHANG Yingli, ZHOU Yuhua,Modern Welding Technology(Beijing, Shield Press,2011)p..83
16 (张应力, 周玉华, 现代焊接技术 (北京, 金盾出版社, 2011)p.83)
17 YIN Shike, Welding Materials and Welding Joint Microstructures/Properties(Beijing, Chemical Industry Press, 2011) p.185
17 (尹士科, 焊接材料及接头组织性能 (北京, 化学工业出版社, 2011) p.185)
18 JIANG Qinglei, LI Yajiang, WANG Juan, XU Zonglin, FU Jinliang, Combination of high strength and high toughness of Q550 high strength steel welding joint, Welding Institution, 31(10), 65(2010)
18 (蒋庆磊, 李亚江, 王娟, 徐宗林, 付金良, Q550高强钢焊接接头强韧性匹配, 焊接学报, 31(10), 65(2010))
19 YU Qingbo, SUN Ying, NI Hongxin, ZHANG Kaifeng, Effect of different bainitic microstructures on the mechanical properties of low-carbon steel, Journal of Mechanical Engineering, 45(12), 284(2009)
19 (于庆波, 孙莹, 倪宏昕, 张凯锋, 不同类型的贝氏体组织对低碳钢力学性能的影响, 机械工程学报, 45(12), 284(2009))
20 G. D. Zhang, C. X. Pan, A. G. Huang, Calculation of AF transformation kinetics in HSLA steel weld, China Welding, 13(1), 46(2004)
[1] LIU Tao, YIN Zhiqiang, LEI Jingfa, GE Yongsheng, SUN Hong. Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression[J]. 材料研究学报, 2023, 37(5): 391-400.
[2] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
[3] SU Nan, CHEN Minghe, XIE Lansheng, LUO Feng, SHI Wenxiang. Dynamic Mechanical Characteristics and Constitutive Model of TC2 Ti-alloy[J]. 材料研究学报, 2021, 35(3): 201-208.
[4] LEI Xuanwei,ZHOU Shuanbao,HUANG Jihua. Current Status and Development Trend on Weldability of Ultra-high Strength Hull Structure Steel[J]. 材料研究学报, 2020, 34(1): 1-15.
[5] Ziqing LI, Wenxiu HE, Yongqiang ZHANG, Huiying YU, Xingsheng LI, Bin LIU. Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene[J]. 材料研究学报, 2018, 32(8): 616-624.
[6] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[7] Yayun ZHANG, Jinshan WEI, Tongbang AN, Yusong XU, Chengyong MA. Effect of Heat Input on Low-temperature Flexibility of Weld Seams of a Hull Steel via Gas-shielded Welding with Filler of Marine High Strength Flux-cored Wire[J]. 材料研究学报, 2018, 32(4): 309-314.
[8] Huipeng LI, Yi XIONG, Yan LU, Tiantian HE, Meixiang FAN, Fengzhang REN. Effect of Strain Rate on Microstructure Evolution and Mechanical Property of 316LN Austenitic Stainless Steel at Cryogenic Temperature[J]. 材料研究学报, 2018, 32(2): 105-111.
[9] Jingli SUN, Dan ZOU, Jing JIN, Li LI, Haiying LIU. Localized Corrosion Resistance of Three Commonly-used Stainless Steels[J]. 材料研究学报, 2017, 31(9): 665-671.
[10] Wenshen YANG,Lin LANG,Xiuli YIN,Chuangzhi WU. Influencing Factors on Formation of SWCNTs in the Channels of AFI Molecular Sieves by Low-temperature Hydrocracking[J]. 材料研究学报, 2017, 31(6): 401-409.
[11] Bin XU,Chengyong MA,Li LI,Xiaoming XIAO,Jianfeng WANG. Effect of Heat Input on Microstructure and Property of Weld Joints of a 1200 MPa Grade HSLA Steel[J]. 材料研究学报, 2017, 31(2): 129-135.
[12] JIA Shujun, WANG Yuanfang, TAN Fengliang, LIU Qingyou. Microstructure and Toughness of Heat-affected Zone of Weld Joint for Pipeline Steels with High Deformability[J]. 材料研究学报, 2016, 30(7): 517-523.
[13] Qiang ZHAO,Yang LIU,Lei WANG,Fang LI. Effect of Strain Rate on Tensile Deformation Behavior of Laser Welded Joints of Superalloy GH4169[J]. 材料研究学报, 2016, 30(12): 881-887.
[14] Guoping LI,Jianjun WANG,Tianhai WU,Yanhui WEN,Huabing LI,Chunming LIU. Microstructure and Mechanical Properties of 2205 DSS Metal Inert-gas Welding Joints[J]. 材料研究学报, 2016, 30(12): 897-903.
[15] Wanli ZHONG,Ming NIE,Yongchun LIANG,Yuantai MA,Ying LI. Corrosion Behavior of Pure Copper in Simulated Acid Rain of Different pH[J]. 材料研究学报, 2015, 29(1): 60-66.
No Suggested Reading articles found!