Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (8): 621-626    DOI: 10.11901/1005.3093.2013.913
Current Issue | Archive | Adv Search |
Thermo-Physical Characteristics of WC Particle-Reinforced Steel Substrate Surface Composites
Zulai LI(),Yehua JIANG,Rong ZHOU,Zhisheng WANG,Quan SHAN
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
Cite this article: 

Zulai LI,Yehua JIANG,Rong ZHOU,Zhisheng WANG,Quan SHAN. Thermo-Physical Characteristics of WC Particle-Reinforced Steel Substrate Surface Composites. Chinese Journal of Materials Research, 2014, 28(8): 621-626.

Download:  HTML  PDF(3134KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Surface composites of WC reinforced steel matrix were fabricated by vacuum-expendable pattern casting (V-EPC) technology in order to provide theoretic direction for designing surface composites with high thermal fatigue performance, and then the thermo-physical properties of the composites, such as thermal expansion coefficients and thermal conductivities were characterized. The influence of process parameters on the thermo-physical characteristics was investigated. The results show that the thermal expansion coefficient the sampled layer decreased when the distance of which to the transition layer becomes lager. For the layers sampled at the same distance, their thermal expansion coefficient increased with the increase of WC particles size. For the surface composites reinforced with different sizes of WC particles, the thermal conductivities increased with the increasing temperature. When the temperature was higher (above 170℃), the thermal conductivities of the composites decreased with increase of the sizes of WC particles, and when the temperature was lower (40℃ and 105℃), the thermal conductivities of the composites did not change remarkably. The composite with Ni addition has lower thermal expansion coefficient and thermal conductivity than that of those without Ni.

Key words:  composites      thermal expansion coefficient      thermal conductivity      particle-reinforced     
Received:  02 December 2013     
Fund: *Supported by National Natural Science Foundation of China Nos.241002 & 51361019.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.913     OR     https://www.cjmr.org/EN/Y2014/V28/I8/621

Fig.1  Sampling schematic diagram of the surface composite
Fig.2  Microstructure of the WC particle-reinforced surface composites (a) without Ni addition, (b) with Ni addition
Fig.3  XRD analysis of the WC particle-reinforced surface composites (a) without Ni addition, (b) with Ni addition
Fig.4  Relationship curves between the thermal expansion coefficient of the samples in different positions and temperature
Fig.5  Microstructure of the different positions in the composite layer (a) transition zone, (b) the middle of the composite layer, (c) the zone nearby the surface of the composite layer
Fig.6  Relationship curves between the thermal expansion coefficient of the samples with different particle sizes and temperature
Fig.7  Relationship curves between the thermal conductivity of the composites and temperature
1 WU RenJie,The prospective opportunities and challenges of composite materials in china during the next century, Acta Materiae Compositae Sinica, 17(1), 1(2000)
1 (吴人洁, 下世纪我国复合材料的发展机遇与挑战, 复合材料学报, 17(1), 1(2000))
2 A. G. Liu, M. H. Guo, M. H. Zhaoet al, Microstructures and wear resistance of large WC particles reinforced surface metal matrix composites produced by plasma melt injection, Surface and Coatings Technology, 201(18), 7978(2007)
3 YU Jiuming, XIAO Yunzhen, WANG Qunjiao,et al, New development of technology of clad metal, CHINESE JOURNAL OF MATERIALS RESEARCH, 14(1), 12(2000)
3 (于九明, 孝云祯, 王群骄等, 金属层状复合技术及其新进展, 材料研究学报, 14(1), 12(2000))
4 HUANG Haoke,LI Zulai, SHAN Quan, JIANG Yehua, HOU Zhandong, Interface remelting of tungsten carbide particles reinforced steel composite, CHINESE JOURNAL OF MATERIALS RESEARCH, 28(3), 191(2014)
4 (黄浩科, 李祖来, 山 泉, 蒋业华, 侯占东, 碳化钨/钢基复合材料的界面重熔. 材料研究学报, 28(3), 191(2014))
5 FU Hanguang, The research and application of high Cr cast steel guide treated by composite modification. SHANGHAI METALS, 20(3), 43(1998)
5 (符寒光, 复合变质处理髙铬铸铁导板的研究及应用, 上海金属, 20(3), 43(1998))
6 XIE Niansuo, LI Chunyue, FENG Xiaominget al. Study on Thermal Fatigue Properties of Functional Gradient Materials of SiCp/Cu, Foundry Technology, 31(6), 706(2010)
6 (解念锁, 李春月, 冯小明等, SiCp/Cu梯度复合材料热疲劳性能研究, 铸造技术, 31(6), 706(2010))
7 W. Li, Z. H. Chen, D. Chen. Thermal fatigue behavior of Al-Si/SiCp composite synthesized by spray deposition, Journal of Alloys and Compounds, 504S, S522(2010)
8 M. Schobel, W. Altendorfer, H. P, Degische.Internal stresses voids in SiC particle reinforced aluminum composites for heat sink applications, Composites Science and Technology, 71(5), 724(2011)
9 LI Wei, CHEN Ding.,CHEN Zhenhua, Small thermal fatigue crack propagation behavior of sprayed Al-Si/SiCp composite for brake disc, The Chinese Journal of Nonferrous Metals, 19, (9), 1563(2009)
9 (李 微, 陈 鼎, 陈振华, 喷射沉积Al-Si/SiCp制动盘材料的热疲劳微裂纹扩展行为, 中国有色金属学报, 19, (9), 1563(2009))
10 R. Q. Huang, Z. L. Li, Y. H. Jiang, R. Zhou, F. Gao,Thermal shock cracks initiation and propagation of WCP / steel substrate surface composite at 500℃, 2011 International Conference on Mechanics and Manufacturing Systems, 1487(109), 253(2011)
11 LI Zulai,JIANG Yehua, ZHOU Rong, YANG Hao, ZHANG Dongping, Process of thermal fatigue crack formation and expansion of WC/iron matrix surface composites, Acta Materiae Compositae Sinica, 25(2), 21(2008)
11 (李祖来, 蒋业华, 周 荣, 羊浩, 张冬平, WC/铁基表面复合材料的热疲劳裂纹形成过程, 复合材料学报, 25(2), 21(2008))
12 SUI Yudong,JIANG Yehua, LI Zulai, ZHOU Rong, SHAN Quan, Effects of nickel powder on microstructure and interface of WC/ steel matrix surface composites, Special Casting & Nonferrous Alloys, 31(6), 565(2011)
12 (隋育栋, 蒋业华, 李祖来, 周 荣, 山 泉, Ni 对 WC/钢基表面复合材料组织和界面的影响, 特种铸造及有色合金, 31(6), 565(2011)
13 Z. L. Li, Y. H. Jiang, R. Zhouet al, Dry three-body abrasive wear behavior of WC reinforced iron matrix surface composites produced by V-EPC infiltration casting process, Wear, 262(5-6), 649(2007)
14 MA Shuangyan,WANG Enze, LU Weiyuan, Study on Thermal Conductivity of Diamond/Copper Composite, Hot Working Technology, 37(4), 36(2008)
14 (马双彦, 王恩泽, 鲁伟员, 金刚石/铜复合材料热导率研究, 热加工工艺, 37(4), 36(2008))
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] HUANG Huan, ZHANG Xuntao, YANG Shangke, XIAO Liuxin, ZHANG Zhaoxin, YAN Lei, LIN Hailan, BIAN Jun, CHEN Daiqiang. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent[J]. 材料研究学报, 2022, 36(6): 416-424.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!