Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (6): 469-475    DOI: 10.11901/1005.3093.2013.611
Current Issue | Archive | Adv Search |
Growth Mechanism of One-dimensional Rutile TiO2 Nanorods Array and Its Application for Dye-Sensitized Solar Cells
Zengming ZHANG(),Jing WANG,Yutian DING,Yong HU,Xingji SHANG
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Materials, Lanzhou University of Technology, Lanzhou 730050
Cite this article: 

Zengming ZHANG,Jing WANG,Yutian DING,Yong HU,Xingji SHANG. Growth Mechanism of One-dimensional Rutile TiO2 Nanorods Array and Its Application for Dye-Sensitized Solar Cells. Chinese Journal of Materials Research, 2014, 28(6): 469-475.

Download:  HTML  PDF(5659KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Photoanodes with a film of rutile TiO2 nanorods were prepared on a conductive glass substrate by hydrothermal method and then characterized by XRD, SEM and HRTEM. The effect of different hydrothermal conditions on the morphology of rutile TiO2 nanorods was carefully examined. The result shows that the diameter and length of rutile TiO2 nanorods increase with the increase of the energy of hydrothermal system; the additives has a great effect on the growth of rutile nanorods; a dense layer will form at the interface of conductive substrates and the rutile TiO2 nanorods, which will affect the photo-electronic properties of DSSCs markedly. Under the stand conditions (AM 1.5 100 mW/cm2), a photoelectric conversion efficiency 1.81% is measured for the dye-sensitized solar sells (DSSCs) constructed with the prepared photoanodes.

Key words:  rutile nanorod      hydrothermal growth      growth mechanism      DSSCs     
Received:  26 August 2013     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.611     OR     https://www.cjmr.org/EN/Y2014/V28/I6/469

Fig.1  XRD patterns of the as-prepared TiO2 nanorods with different TTB concentration (a) 0.6 ml, (b) 0.8 ml, (c)1.2 ml, (d)1.6 ml
Fig.2  TEM and HRTEM picture of rutile nanorod
Fig.3  FESEM images of the oriented rutile nanorod film with different TTB concentration (a) 0.6 ml, (b) 1.2 ml, (c) 1.6 ml(the inset picture is the cross-sectional view) (TTB 1.6 ml), (d) 1.8 ml
Fig.4  FESEM images of oriented rutile nanorod film grown at different temperatures (a) 120℃, (b)140℃, (c)160℃, (d)180℃, (e)150℃, 3 h
Fig.5  FESEM images of oriented rutile nanorod film with different levels of NaCl (a) 1 ml, (b) 2 ml, (c) 4 ml (the cross-sectional view, growth time 10 h), (d) 7 ml
Fig.6  Diameter distribution of rutile nanorods under different concentration ofCl- (a) NaCl 1 ml, (b) NaCl 4 ml
Fig.7  N 719 dye absorbtion performance of DSSCs electrodes under different conditions
Photoelectrode Absorbed N 719/×107 molcm-2 VOC/V JSC/mAcm-2 FF η/%
a TTB0.6 0.22 0.676 0.648 0.23 0.10
bTTB0.8 0.51 0.713 1.185 0.25 0.19
c TTB1.2 0.42 0.605 1.102 0.26 0.18
d TTB0.8-140℃ 0.24 0.682 0.869 0.15 0.09
e TTB0.8-160℃ 0.63 0.774 4.004 0.29 0.89
f TTB0.8-180℃ 0.59 0.781 2.562 0.25 0.49
g TTB0.8-150℃ 0.72 0.750 4.31 0.34 1.10
h NR-6h-TT 1.05 0.839 6.43 0.33 1.78
i NR-12h-TT 0.75 0.836 4.39 0.49 1.81
j NR-24h-TT 0.57 0.760 2.49 0.35 0.67
Table 1  Related parameters of photovoltaic performance of DSSCs presented in Fig.8
Fig.8  I-V curves of DSSCs under different conditions
1 B. O'Reagan, M. Gr?tzel,A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353(0), 737(1991)
2 K. J. A. Raj, B. Viswanathan,Effect of surface area, pore volume and partical size of P25 titania on the phase transformation of anatase rutile, Indian Journal of Chemistry, 48A(0), 1378(2009)
3 CHENG Lifang,WANG Yu, DAI Songyuan, WU Qinchong, WANG Kongjia, Preparation and virtues of nanocrystalling TiO2 porous film and its application in solar cell, Chinese Journal of Materials Research, 10(4), 404(1996)
3 (程黎放, 王 瑜, 戴松元, 邬钦崇, 王孔嘉, 纳米晶体TiO2多孔膜的制备、性能及其在太阳能电池中的应用, 材料研究学报, 10(4), 404(1996))
4 S. Ameen, M.S. Akhtar, M. Song, H.S. Shin,Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion, ACS Applied Material Interfaces, 4(8), 4405(2012)
5 B. C. Fitzmorris, G. K. Larsen, D. A. Wheeler, Y. Zhao, J. Z. Zhang,Ultrafast charge transfer dynamics in polycrystalline CdSe/TiO2 nanorods prepared by oblique angle codeposition, The Journal of Physical Chemistry C, 116(8), 5033(2012)
6 S. A. Berhe, S. Nag, Z. Molinets, W.J. Youngblood,Influence of seeding and bath conditions in hydrothermal growth of very thin (approximately 20nm) single-crystalline rutile TiO2 nanorod films, ACS Applied Material Interfaces, 5(4), 1181(2013)
7 ZHONG Qisheng,WANG Dawei, LI Feng, LU Gaoqing, CHENG Huiming, Preparation of free-standing transparent titania nanotube array membranes, Chinese Journal of Materials Research, 23(2), 118(2009)
7 (钟启生, 王大伟, 李 峰, 逯高清, 成会明, 无基底透明二氧化钛纳米管阵列薄膜的制备, 材料研究学报, 23(2), 118(2009))
8 B. Liu, E. S.Aydil,Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, Journal of America Chemistry Society, 131(0), 3985(2008)
9 MA Guobin,ZHU Jianmin, ZHANG Wenqi, WANG Mu, YAN Naiben, Oriented array of TiO2 nanorods, Chinese Journal of Stereology and Image Analysis, 11(4), 243(2006)
9 (马国斌, 朱健民, 章闻奇, 王 牧, 闵乃本, 二氧化钛纳米棒阵列的取向研究, 中国体视学与图像分析, 11(4), 243(2006))
10 R. Xu, H. C. Zeng,Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95℃, Journal of Physical Chemistry B, 107(0), 926(2003)
11 E. Hosono, T. Tokunaga, S. Ueno, Y. Oaki, H. Imai, H. Zhou, S. Fujihara,Crystal-growth process of single-crystal-like mesoporous ZnO through a competitive reaction in solution, Crystal Growth & Design, 12(6), 2923(2012)
12 Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa,Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell.Coordination Chemistry Reviews, 248(13-14), 1381(2004)
13 S. W. Lee, K. S. Ahn, K. Zhu, N. R. Neale, A. J. Frank,Effects of TiCl4 treatment of nanoporous TiO2 films on morphology, light harvesting and charge-carrier dynamics in dye-sensitized solar cells, The Journal of Physical Chemistry C, 116(40), 21285(2012)
14 TIAN Yongshu,The optimization of photoanode of dye-sensitized solar cells, P.h.D. Thesis, Chongqing University(2012)
14 (田永书, 染料敏化太阳能电池光阳极的优化, 博士学位论文, 重庆大学(2012))
[1] YANG Wenjing, LI Guangyu, WANG Jian, DING Hua, ZHANG Ning, ZHANG Yanling, HOU Hongliang, LI Zhiqiang. Morphology Evolution of Cavity and Energy Dissipation during Superplastic Deformation of 7B04 Al-alloy[J]. 材料研究学报, 2022, 36(9): 667-678.
[2] ZHEN Longyun, PENG Peng, QIU Chenggong, ZHENG Beirong, ARMAOU Antonios, ZHONG Rong. Effect of Pre-deposited Al Layer on Growth of AlN Buffer Layer and GaN Film on Si Substrate by Metal-organic Chemical Vapor Deposition[J]. 材料研究学报, 2020, 34(10): 744-752.
[3] KANG Zhixin SANG Jing LIU Yinghui WANG Fen LONG Yan LI Yuanyuan. Polymer Plating on Surface of Magnesium Alloy and Functional Characteristics of Nano Film[J]. 材料研究学报, 2010, 24(4): 337-342.
[4] LIU Xinli WANG Shiliang ZHANG Quan DENG Yida HE Yuehu. Vapor Phase Synthesis and Optic Properties of MoO2 Micro/nanosheet[J]. 材料研究学报, 2010, 24(1): 17-24.
[5] WANG Yiqian LIANG Wenshuang ROSS Guy. Microstructure and optical properties of Si nanocrystals embedded in SiO2 film[J]. 材料研究学报, 2009, 23(4): 352-356.
[6] ;. The Analysis and Growth Mechanism of Core/Shell-type Ni/MnO Nanoparticls[J]. 材料研究学报, 2008, 22(3): 241-245.
[7] XIE Song; MENG Guangyao; PENG Dingkun (Department of Materials Science and Engineering)University of Science and Technology of China; Hefei 230026). THE PREMRAfION OF ORIENTED AlN NANOMETER THIN FILMS BY MICROWAVE PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION[J]. 材料研究学报, 1998, 12(4): 369-374.
[8] HAN Weiqiang; FAN Shoushan;LI Qunqing;GU Binglin (Dept. of Physics; Tsinghua University; Beijing 100084). GROWTH AND MICROSTRUCTURE OF SILICON CARBIDE NANORODS[J]. 材料研究学报, 1998, 12(3): 335-336.
[9] LIU Lin FU Hengzhi (Northwestern Polytechnical University). THEORETICAL MORPHOLOGY OF MC CARBIDES PRECIPITATED IN Ni-BASE SUPERALLOY MELT[J]. 材料研究学报, 1989, 3(5): 396-400.
No Suggested Reading articles found!