Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (10): 751-758    DOI: 10.11901/1005.3093.2023.560
  研究论文 本期目录 | 过刊浏览 |
渗氮对SmFeN合金粉末吸波性能的影响
董宇航, 刘春忠(), 张洪宁, 卢天倪, 李娜, 黄震威, 马驰野
沈阳航空航天大学材料科学与工程学院 沈阳 110136
Impact of Nitriding on Microstructure and Wave-absorbing Properties of SmFeN Alloy Powders
DONG Yuhang, LIU Chunzhong(), ZHANG Hongning, LU Tianni, LI Na, HUANG Zhenwei, MA Chiye
Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

董宇航, 刘春忠, 张洪宁, 卢天倪, 李娜, 黄震威, 马驰野. 渗氮对SmFeN合金粉末吸波性能的影响[J]. 材料研究学报, 2024, 38(10): 751-758.
Yuhang DONG, Chunzhong LIU, Hongning ZHANG, Tianni LU, Na LI, Zhenwei HUANG, Chiye MA. Impact of Nitriding on Microstructure and Wave-absorbing Properties of SmFeN Alloy Powders[J]. Chinese Journal of Materials Research, 2024, 38(10): 751-758.

全文: PDF(7010 KB)   HTML
摘要: 

对SmFeN粉末渗氮,研究了渗氮对其吸波性能的影响。结果表明:渗氮能提高SmFeN合金的 N含量,使合金中氮化物的结构向Fe3N、Fe2N转变,从而提高其吸波性能。渗氮使SmFeN的反射损耗大幅度增强(最小反射损耗值为-52.49 dB),使有效吸收频宽变宽并向低频移动,在10.4~14.7 GHz频段有效吸收频宽的最大值为4.3 GHz。

关键词 金属材料SmFeN渗氮吸波性能介电损耗阻抗匹配    
Abstract

SmFeN has received a lot of attention in recent years because of its exceptional wave-absorbing characteristics. Herein, nitro-SmFeN alloy powders were prepared by gas nitriding at 550oC for 2 h and 3 h. Then the effect of nitriding treatment on their microstructure and electromagnetic parameters (including the dielectric real part ε′, the dielectric imaginary part ε″, the permeability real part μ′ and the permeability imaginary part μ″), attenuation constants, and impedance matching, as well as the influence on wave-absorbing properties were studied in detail. The findings indicate that the N content of SmFeN alloy powders can be increased due to the nitriding treatment, as a subsequence the the nitride structure of SmFeN is changed to Fe3N and Fe2N, therewith its wave absorbing performance is enhanced. Following nitriding, SmFeN's reflectivity value is significantly increased (with a minimum reflection loss value of -52.49 dB). Additionally, the effective absorption bandwidth is widened and moved to a lower frequency, with a maximum value of 4.3 GHz in the 10.4~14.7 GHz frequency range. The study's findings offer a useful concept for the ensuing relevant applications.

Key wordsmetallic materials    SmFeN    nitriding    wave-absorbing properties    dielectric loss    impedance matching
收稿日期: 2023-11-22     
ZTFLH:  TB34  
基金资助:稀土资源利用国家重点实验室开放课题(RERU2022-019);辽宁省应用基础研究计划(2023JH2/101300235)
通讯作者: 刘春忠,教授,czliu@sau.edu.cn,研究方向为吸磁性波材料
Corresponding author: LIU Chunzhong, Tel: 18040038858, E-mail: czliu@sau.edu.cn
作者简介: 董宇航,男,1997年生,硕士生
Element%, mass fraction
N2.5
Sm23
Fe73
表1  SmFeN合金的成分
Sample numberNitriding duration
S00 h
S22 h
S33 h
表2  样品编号的说明
图1  渗氮时间不同的SmFeN粉末的XRD谱
No.Sm2Fe17N2.9Fe24N10Fe2NFe3N
S068.3%31.7%--
S245.3%-11.2%43.5%
S343.3%-41.2%15.6%
表3  不同渗氮时间SmFeN的相含量
图2  不同渗氮时长的SmFeN的SEM照片
图3  不同渗氮时长的SmFeN的成分分布
图4  不同渗氮时长的SmFeN的电磁参数
图5  不同渗氮时长的SmFeN的介电损耗和磁损耗
图6  不同渗氮时长的SmFeN粉末的Cole-Cole圆
rbεsεεs-εFrequency band / GHz
1.556.468.014.913.1010.804~11.7035
S01.556.868.415.313.108.0155~10.3542
1.397.759.146.362.785.407~6.3065
S23.616.259.862.647.2216.29095~16.83065
S34.938.8813.813.959.8615.7512~16.6507
表5  不根据Cole-Cole半圆计算的不同渗氮时长的SmFeN粉末的静态介电系数和光频介电系数
图7  不同渗氮时长的SmFeN粉末的C0值
图8  不同渗氮时长的SmFeN粉末的衰减常数α
图9  不同渗氮时长的SmFeN粉末的阻抗匹配图
图10  不同渗氮时长的3DRL图
Sample numberd / mmFrequency / GHzRL / dB(< -10 GHz) Frequency band
S02.4410.6-1310.17~11.25
S21.717.82-23.0513.7~18
S34.645.67-52.495.4~8
2.412.1-45.8410.4~14.7
表6  原始SmFeN不同渗氮时长反射损耗最低值和有效频宽范围
1 Liu S H, Liu J M, Dong X L, et al. Electromagnetic Wave Shielding aand Absorbing Materials [M]. Beijing: Chemical Industry Press, 2007
1 刘顺华, 刘军民, 董星龙 等. 电磁波屏蔽及吸收材料 [M]. 北京: 化学工业出版社, 2007
2 Li H S, Coey J M D. Chapter 1 Magnetic properties of Ternary Rare-earth Transition-metal Compounds [M]. Handbook of Magnetic Materials. Elsevier. 1991: 1
3 Ye J W, Liu Y, Zheng H X, et al. Structure refinement analysis of Sm2Fe(17)N x [J]. Rare Met. Mater. Eng., 2011, 40(6): 1015
3 叶金文, 刘 颖, 郑华雄 等. Sm2Fe(17)N x 的结构精修分析 [J]. 稀有金属材料与工程, 2011, 40(6): 1015
4 Ye J W, Liu Y, Wang D, et al. Nitriding behavior of Sm2Fe17 alloy studied by XRD [J]. Rare Met. Mater. Eng., 2006
4 叶金文, 刘 颖, 王 东 等. 用XRD研究Sm2Fe17合金氮化行为 [J]. 稀有金属材料与工程, 2006
5 Lu C, Hong X, Bao X, et al. Changing phase equilibria: A method for microstructure optimization and properties improvement in preparing anisotropic Sm2Fe17N3 powders [J]. J. Alloys Compound., 2019, 784: 980
6 Okada S, Suzuki K, Node E, et al. Preparation of submicron-sized Sm2Fe17N3 fine powder with high coercivity by reduction-diffusion process [J]. J. Alloys Compound., 2017, 695: 1617
7 Zhou X, Wang B, Jia Z, et al. Dielectric behavior of Fe3N@C composites with green synthesis andtheir remarkable electromag‐netic wave absorption performance [J]. J. Colloid Interf. Sci., 2021, 582: 515
8 Lv H, Zhang H, Zhao J, et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures [J]. Nano Res., 2016, 9(6): 1813
9 Cheng Y, Cao J M, Li Y, et al. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption [J]. ACS Sustainable Chem. Eng., 2018, 6: 1427
10 Wang H, Meng F, Huang F, et al. Interface modulating CNTs@ PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption [J]. ACS Appl. Mater. Interf., 2019, 11(12): 12142
11 Meena R S, Bhattachrya S, Chatterjee R. Complex permittivity, permeability and microwave absorbing properties of (Mn2- x Zn x )U-type hexaferrite [J]. J. Magnetism Magnetic Mater., 2010, 322(19): 2908
12 Li J, Dai B, Qi Y, et al. Enhanced electromagnetic wave absorption properties of carbon nanofibers embedded with ZnO nanocrystals [J]. J. Alloys Compound., 2021, 877160132
13 Luo J, Gao D. Synthesis and microwave absorption properties of PPy/Co nanocomposites [J]. J. Magnetism Magnetic Mater., 2014, 368: 82
14 Liu J L, Zhang P, Zhang X K, et al. Synthesis and microwave absorbing properties of La-doped Sr-hexaferrite nanopowders via sol-gel auto-combustion method [J]. Rare Metal., 2017, 36(9): 704
[1] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[2] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[3] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[4] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[5] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[6] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[7] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[8] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[11] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[12] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[13] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[14] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[15] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.