Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (10): 741-750    DOI: 10.11901/1005.3093.2023.562
  研究论文 本期目录 | 过刊浏览 |
激光熔覆CoCrFeNiSi x 高熵合金涂层的耐磨和耐蚀性能
张泽疆, 李新梅()
新疆大学机械工程学院 乌鲁木齐 830000
Wear and Corrosion Resistance of Laser Cladding CoCrFeNiSi x High Entropy Alloy Coating
ZHANG Zejiang, LI Xinmei()
School of Mechanical Engineering, Xinjiang University, Urumqi 830000, China
引用本文:

张泽疆, 李新梅. 激光熔覆CoCrFeNiSi x 高熵合金涂层的耐磨和耐蚀性能[J]. 材料研究学报, 2024, 38(10): 741-750.
Zejiang ZHANG, Xinmei LI. Wear and Corrosion Resistance of Laser Cladding CoCrFeNiSi x High Entropy Alloy Coating[J]. Chinese Journal of Materials Research, 2024, 38(10): 741-750.

全文: PDF(18766 KB)   HTML
摘要: 

在40Cr表面激光熔覆CoCrFeNiSi x (x = 0.2,0.6,1)高熵合金涂层,分析其物相、显微组织、硬度并测试了摩擦磨损和电化学腐蚀性能,研究了Si元素对高熵合金涂层的相结构、组织和性能的影响。结果表明:随着Si元素的增加涂层从单一面心立方结构转变为面心立方和硅化物σ相结构,最后转变为面心立方、体心立方和σ相结构。涂层的显微组织由等轴晶转变为柱状晶,最后成为树枝晶。随着Si含量的提高涂层的显微硬度随之提高,x = 1的涂层其平均硬度最高(498.92HV),约为基体的2.52倍。其主要原因是,Si元素的加入导致晶格畸变,引起的固溶强化和涂层中生成的金属间化合物σ相产生了第二相强化。随着Si含量的提高涂层的磨损量减少和平均摩擦系数显著降低,Si含量为1的涂层摩擦系数约为0.309。在总体上,涂层的主要磨损机制由黏着磨损、分层磨损向磨粒磨损演变,耐磨性能明显提高。在3.5%NaCl溶液中,这种涂层的耐蚀性能随着Si含量的提高而提高,Si含量为1的涂层,其耐蚀性能最好。

关键词 金属材料高熵合金激光熔覆微观结构耐磨性耐腐蚀性    
Abstract

A high entropy alloy CoCrFeNiSi x (x = 0.2, 0.6, 1) coating was deposited onto 40Cr steel surface by means of laser cladding technique. The phase composition, microstructure, hardness, friction and wear behavior, as well as electrochemical corrosion properties of the coating in 3.5%NaCl solution were systematically investigated with emphasis on the effect of Si element on the high entropy alloy coating. Results reveal that with the increasing in Si content, the high entropy alloy coatings experienced transformation of phase composition from single face-centered cubic structure to face-centered cubic structure with silicide σ phase and finally to face-centered cubic structure with body-centered cubic structure and σ phase. The microstructure of the coating evolves from equiaxial to columnar and dendritic morphology. The microhardness of the coating increases with the increasing Si content; when x = 1, it reaches the maximum value 498.92HV, which is about 2.52 times higher than that of the substrate, which may be due to solid solution strengthening caused by lattice distortion induced by Si addition and second-phase strengthening resulting from intermetallic compound σ phase formation within the coating matrix. Moreover, with the increasing Si content, the wear rate and average friction coefficient reduced gradually; when x = 1, the friction coefficient decreases significantly to around 0.309, indicating that the improved tribological performance mainly attributed to changes in wear mechanism from adhesive wear or delamination wear towards abrasive, so that the wear resistance is enhanced under dry sliding conditions. The corrosion resistance of alloy coatings in 3.5%NaCl solution is also improved gradually with the increasing Si content, reaching its optimum value by x = 1.

Key wordsmetallic materials    high entropy alloy    laser cladding    microstructure    wear resistance    corrosion resistance
收稿日期: 2023-11-24     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(52161017);新疆维吾尔自治区自然科学基金(2022D01C386)
通讯作者: 李新梅,教授,lxmxj@126.com,研究方向为材料表面改性技术
Corresponding author: LI Xinmei, Tel: 13699372889, E-mail: lxmxj@126.com
作者简介: 张泽疆,男,1999年生,硕士生
图1  CoCrFeNiSi x (x = 0.2,0.6,1)高熵合金涂层的XRD谱
图2  CoCrFeNiSi x (x = 0.2,0.6,1)高熵合金的微观组织形貌
AlloysPointElements / %, atom fraction
CoCrFeNiSi
Si0.2A17.6216.3948.0815.62.3
B16.0618.9542.9817.454.57
Si0.6C21.0718.3735.9118.156.5
D16.4421.7027.4718.4915.89
Si1E16.2716.7543.3012.6910.99
F16.4614.1032.6719.6817.09
表1  CoCrFeNiSi x (x = 0.2,0.6,1)涂层测试点的EDS分析
图3  CoCrFeNiSi x (x = 0.2,0.6,1)合金涂层的Mapping图
图4  CoCrFeNiSi x (x = 0.2,0.6,1)合金涂层的显微硬度
图5  基体和涂层的摩擦磨损曲线
图6  基体和涂层的平均摩擦系数
图7  40Cr基体和CoCrFeNiSi x (x = 0.2,0.6,1)合金涂层的磨损轮廓曲线、磨损截面面积
图8  基体和涂层的磨损体积和磨损率
图9  基体和涂层的磨痕形貌
图10  基体和涂层在3.5%NaCl溶液中的极化曲线
AlloyEcorr / VIcorr / A·cm-2
40Cr-1.08275.0528 × 10-4
Si0.2-0.98434.5095 × 10-4
Si0.6-0.96432.5326 × 10-4
Si1-0.93432.3539 × 10-4
表2  基体和不同Si含量涂层的电化学参数
图11  基体和不同Si含量涂层的电化学阻抗谱和等效电路
AlloyRs / Ω·cm2Rf / Ω·cm2Rct / Ω·cm2
40Cr6.097605.72250
Si0.27.318606.54373
Si0.67.773809.74790
Si16.651942.16263
表3  基体和涂层的电化学阻抗拟合结果
图12  基体和涂层在3.5%NaCl溶液中的腐蚀形貌
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
2 Zhu Q, Liu Y, Zhang C. Laser cladding of CoCrFeNi high-entropy alloy coatings: Compositional homogeneity towards improved corrosion resistance [J]. Mater. Lett., 2022, 318: 132133
3 Zhang W, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61(1): 2
4 Zhao Y J, Qiao J W, Ma S G, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy [J]. Mater. Design, 2016, 96: 10
5 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nature Com., 2015, 6(1): 6529
6 Cheng J, Sun B, Ge Y, et al. Effect of B/Si ratio on structure and properties of high-entropy glassy Fe25Co25Ni25(B x Si1- x ) 25 coating prepared by laser cladding [J]. Surface Coat. Technol., 2020, 402: 126320
7 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Mater. Sci., 2014, 61: 1
8 Wang Z, Huang Y, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys [J]. Scri. Mater., 2015, 94: 28
9 Kumar N, Fusco M, Komarasamy M, et al. Understanding effect of 3.5wt.%NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy [J]. J. Nuclear Mater., 2017, 495: 154
10 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153
doi: 10.1126/science.1254581 pmid: 25190791
11 Gan Y, Duan S, Mo Y, et al. Effects of Al addition on the microstructure and mechanical properties of AlxCoCrFeNi2.1 high-entropy alloys [J]. Intermet., 2024, 166: 108172
12 Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments [J]. Corr. Sci., 2008, 50(7): 2053
13 He S H, Cheng F, Xia S Q, et al. Preparation and properties of high-entropy alloys [J]. Thermal Working Technol., 2022, 51(18): 22
13 何胜豪, 程 芳, 夏松钦 等. 高熵合金的制备及性能 [J]. 热加工工艺, 2022, 51(18): 22
14 Shu F, Wang B, Zhao H, et al. Effects of line energy on microstructure and mechanical properties of CoCrFeNiBSi high-entropy alloy laser cladding coatings [J]. J. Therm. Spray Technol., 2020, 29: 789
15 Shu F Y, Wu L, Zhao H Y, et al. Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating [J]. Mater. Lett., 2018, 211: 235
16 Zhang S, Wu C L, Zhang C H, et al. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance [J]. Optics Laser Technol., 2016, 84: 23
17 Pereira J C, Zambrano J C, Tobar M J, et al. High temperature oxidation behavior of laser cladding MCrAlY coatings on austenitic stainless steel [J]. Surf. Coat. Technol., 2015, 270: 243
18 Zhang S, Han B, Li M, et al. Microstructure and high temperature erosion behavior of laser cladded CoCrFeNiSi high entropy alloy coating [J]. Surf. Coat. Technol., 2021, 417: 127218
19 Li Z, Chai L, Tang Y, et al. 316L stainless steel repaired layers by weld surfacing and laser cladding on a 27SiMn steel: A comparative study of microstructures, corrosion, hardness and wear performances [J]. J. Mater. Res. Technol., 2023, 23: 2043
20 Liu X, Jiang F, Chen Z, et al. Microstructure and corrosion property of TC4 coating with Al0.5CoCrFeNi high-entropy alloy interlayer by laser cladding [J]. Surf. Coat. Technol., 2024, 476: 130190
21 Li Y, Li Y, Wang W, et al. Synthesis Fe-Ni protective coating on 45 steel by laser remelting nickel pre-coating dopped with Fe-based amorphous powders [J]. Mater. Character., 2021, 176: 111129
22 Ren L, Ding Y, Cheng Y, et al. The microstructure evolving and element transport of Ni-based laser-cladding layer in supercritical water [J]. Corr. Sci., 2022, 198: 110112
23 Liu Y, Yao Z, Zhang P, et al. Tailoring high-temperature oxidation resistance of FeCrMnVSi x high entropy alloy coatings via building Si-rich dendrite microstructure [J]. Appl. Surface Sci., 2022, 606: 154862
24 Liu H, Zhang T, Sun S, et al. Microstructure and dislocation density of AlCoCrFeNiSi x high entropy alloy coatings by laser cladding [J]. Mater. Lett., 2021, 283: 128746
25 Zhu Z X, Liu X B, Liu Y F, et al. Effects of Cu/Si on the microstructure and tribological properties of FeCoCrNi high entropy alloy coating by laser cladding [J]. Wear, 2023, 512: 204533
26 Chen Y, Gao X, Qin G, et al. Achieving excellent specific yield strength in non-equiatomic TiNbZrVMo high entropy alloy via metalloid Si doping [J]. Mater. Lett., 2023: 133832
27 Tsai M H, Yuan H, Cheng G, et al. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy [J]. Intermetal., 2013, 33: 81
28 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46(12): 2817
29 Cheng P, Zhao Y, Xu X, et al. Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSi x high-entropy alloys containing coherent nanometer-scaled precipitates [J]. Mater. Sci. Eng., 2020, 772: 138681
30 Huang L, Wang X, Jia F, et al. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSi x high entropy alloys [J]. Mater. Lett., 2021, 282: 128809
31 Hao W J, Sun R L, Niu W, et al. Microstructure and properties of high-entropy alloy coatings CoCrFeNiSi x laser cladding [J]. Surf. Technol., 2021, 50(5): 87
31 郝文俊, 孙荣禄, 牛 伟 等. 激光熔覆CoCrFeNiSi x 高熵合金涂层的组织及性能 [J]. 表面技术, 2021, 50(5): 87
32 Teskeredžić A, Demirdžić I, Muzaferija S. Numerical method for calculation of complete casting processes—Part I: Theory [J]. Numerical Heat Trans., B: Fundament., 2015, 68(4): 295
33 Korchef A, Champion Y, Njah N. X-ray diffraction analysis of aluminium containing Al8Fe2Si processed by equal channel angular pressing [J]. J. Alloys Compound., 2007, 427(1-2): 176
34 Ogura M, Fukushima T, Zeller R, et al. Structure of the high-entropy alloy AlxCrFeCoNi: fcc versus bcc [J]. J. Alloys Compound., 2017, 715: 454
35 Liu H, Sun S, Zhang T, et al. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding [J]. Surf. Coat. Technol., 2021, 405: 126522
36 Kumar A, Swarnakar A K, Basu A, et al. Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSi x high entropy alloys [J]. J Alloys Compound., 2018, 748: 889
37 Xiao J K, Tan H, Chen J, et al. Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiC x high-entropy alloys [J]. J. Alloys Compound., 2020, 847: 156533
38 Toroghinejad M R, Ebrahimi F, Shabani A. Synthesis of the AlCrCuMnNi high entropy alloy through mechanical alloying and spark plasma sintering and investigation of its wear behavior [J]. J. Mater. Res. Technol., 2022, 21: 3262
39 Cheng J, Sun B, Ge Y, et al. Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: Microstructure evolution and wear behavior [J]. Surf. Coat. Technol., 2020, 402: 126321
40 Brito C, Vida T, Freitas E, et al. Cellular/dendritic arrays and intermetallic phases affecting corrosion and mechanical resistances of an Al-Mg-Si alloy [J]. J. Alloys Compound., 2016, 673: 220
41 Wang N, Wang R, Feng Y, et al. Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery [J]. Corr. Sci., 2016, 112: 13
42 Bommersbach P, Alemany-Dumont C, Millet J P, et al. Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods [J]. Electrochim. Acta, 2005, 51(6): 1076
43 Della Rovere C A, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corr. Sci., 2012, 57: 154
44 Bogdanov R I, Vorkel V A, Ignatenko V E, et al. Corrosion and electrochemical behavior of CoСrFeNiMo high-entropy alloy in acidic oxidizing and neutral chloride solutions [J]. Mater. Chem. Phys., 2023, 295: 127123
[1] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[2] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[3] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[4] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[5] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[6] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[7] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[8] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[9] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[10] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[11] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[12] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[13] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[14] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[15] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.