Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (5): 501-507    
  研究论文 本期目录 | 过刊浏览 |
脉冲周期和糖精添加剂对电沉积Ni镀层微观结构的影响
郑良福, 彭晓, 王福会
中国科学院金属研究所金属腐蚀与防护国家重点实验室 沈阳 110016
Effect of Pulse Period and Saccharin Additive on Microstructure of Ni Electrodeposits
ZHENG Liangfu, PENG Xiao, WANG Fuhui
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

郑良福 彭晓 王福会. 脉冲周期和糖精添加剂对电沉积Ni镀层微观结构的影响[J]. 材料研究学报, 2010, 24(5): 501-507.
, , . Effect of Pulse Period and Saccharin Additive on Microstructure of Ni Electrodeposits[J]. Chin J Mater Res, 2010, 24(5): 501-507.

全文: PDF(1018 KB)  
摘要: 用脉冲电沉积技术制备Ni镀层, 研究了脉冲周期和糖精添加剂对其微观结构的影响。结果表明, 采用单向脉冲电沉积时, 增大脉冲周期可制备出生长取向更均匀、表面更平整且晶粒尺寸更小的纳米晶Ni镀层; 在镀液中加入糖精可降低镀层中的张应力, 从而避免镀层开裂, 且可明显细化镀层的晶粒尺寸; 采用正反脉冲电沉积时, 随着反向脉冲周期的增大, 镀层的晶粒先沿<200>方向择优生长, 而后转变为沿<111>、<200>和<220>三个方向较均匀生长,最后又重新沿<200>方向择优生长。
关键词 材料合成与加工工艺  脉冲电沉积  脉冲周期  糖精  织构  微观结构  纳米晶Ni    
Abstract:The effects of pulse period and saccharin additive on the microstructure of Ni films electrodeposited using pulse power from a conventional nickel sulphate bath have been investigated by SEM, XRD and TEM. The results show that, 1) an increase of pulse period during pulse electrodeposition favors to deposit a finer grained Ni film with increased homogeneity in the deposition orientations along <111>, <200> and <220>; 2) addition of saccharin during the pulse electrodeposition helps to significantly decrease the tensile growth stress, preventing Ni deposits from cracking; 3) an increase of pulse reverse period during pulse reverse electrodeposition causes a gradual evolution in the growth texture of Ni film from first appearance, subsequent disappearance and final appearance of  <200> dominant orientation.
Key wordssynthesizing and processing technics     pulse electrodepostion    pulse period    saccharin     texture    microstructure    nanocrystalline Ni
收稿日期: 2010-06-17     
ZTFLH: 

TG146.2

 
[1] G Palumbo, D M Doyle, A M El-Sherik, U Erb, K T Aust, Intercrystalline hydrogen transport in nanocrystalline nickel, Scr. Metll. Mater., 25, 679(1991). [2] U Erb, A M El-Sherik, nanocrystalline materials and process of producing the same, US Patent 5, 352, 266(1994). [3] A M El-Sherik, U Erb, Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition, J. Mater. Sci., 30, 5743(1995). [4] U Erb, Electrodeposited nanocrystals: Synthesis, properties and industrial applications, Nanostruct. Mater., 6, 533(1995). [5] H Natter, M Schmelzer, R Hempelmann, Nanocrystalline nickel and nickel-copper-alloys: Synthesis, characterization and thermal stability, J. Mater. Res., 13, 1186(1998). [6] A Robertson, U Erb, G Palumbo, Practical applications for electrodeposited nanocrystalline materials, NanoStr. Mater., 12, 1035(1999). [7] I Baskaran, T S N Sankara Narayanan, A Stephen., Pulsed electrodeposition of nanocrystalline Cu-Ni alloy films and evaluation of their characteristic properties, Mater. Let., 60, 1990(2006). [8] A Marlot, P Kern, D Landolt., Pulse plating of Ni-Mo alloys from Ni-rich electrolytes, Electro. Acta, 48, 29(2002). [9] R T C Choo, J M Toguri, A M El-Sherik, et al. Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating, J. Appl. Electrochem., 25, 384(1995). [10] Y Zhang, X Peng, F Wang, Development and oxidation at 800 oC of a novel electrodeposited Ni-Cr nanocomposite film, Mater. Let., 58, 1134(2004). [11] X Peng, T Li, W Wu, et al. Effect of La2O3 particles on microstructure and cracking-resistance of NiO scale on electrodeposited nickel films, Mater. Sci. Eng., A298, 100(2001). [12] Y Zhou, X Peng, F Wang, Oxidation of a novel electrodeposited Ni-Al nanocomposite film at 1050 oC, Scr. Mater., 50, 1429(2004). [13] S Kaja, H W Pickering, W R Bitler, Effect of pH on the microstructure of nickel electrodeposits – A TEM Study, Plat. Surf. Fin., 73, 58(1986). [14] S Shriram, S Mohan, N G Renganathan, et al. R Venkatachalam, Electrodeposition of nanocrystalline nickel - a brief review, Trans. IMF., 78, 194(2000). [15] R Weil, H C Cook, Electron-microscopic observations of the structure of electroplated nickel, J. Electrochem. Soc., 109, 295(1962). [16] A G McCormark, M J Oomeroy, V J Cunnane, Microstructural Development and Surface Characterization of Electrodeposited Nickel/Yttria Composite Coatings, J. Electrochem. Soc., 150, C356(2003). [17] X Peng, J Yan, C Xu, et al. Oxidation at 900 oCof the chromized coatings on A3 carbon steel with the electrodeposition pretreatment of Ni or Ni-CeO2 film, Metall. Mater. Trans., A39, 119(2008). [18] J Labell, A Zagofsky, S Pearman, Cu K?2 elimination algorithm, J. Appl. Cryst., 8, 499(1975). [19] M Paunovic, M Schlesinger, Fundamentals of Electrochemical Deposition, Electrochemical Society Series, 1998. [20] W Kim, R Weil, Pulse plating effects in nickel electrodeposition, Surf. Coat. Technol., 38, 289(1989). [21] F A Doljack, R W Hoffman, The origins of stress in thin nickel films, Thin Solid Films, 12, 71(1972). [22] N S Qu, D Zhu , K C Chan, et al. Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density, Surf. Coat. Technol., 168, 123(2003). [23] A Bhandari, S J Hearne, B W Sheldon, S K Soni, Microstructural Origins of Saccharin-Induced Stress Reduction in Electrodeposited Ni, J. Electrochem. Soc., 156, D279(2009). [24] Y Nakamura, N Kaneko, M Watanabe, H Nezu, Effect of saccharin and aliphatic-alcohols on the electrocrystallization of nickel, J. Appl. Electrochem., 24, 227(1994). [25] J P Bonino, P. Pouderoux, C. Rossignol, A. Rousset, Effect of saccharin addition on the physicochemical characteristics of deposists from electrolytic nickel-phosphorus baths, Plat. Surf. Fin., 78, 62(1992). [26] H P Klug, L E Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, Wiley, New York, 1974: 661.
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[11] 王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
[12] 刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
[13] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[14] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.
[15] 唐昭辉, 丁学勇, 董越, 刘程宏, 魏国. w(MgO)对高钛高炉渣黏流特性的影响*[J]. 材料研究学报, 2016, 30(6): 443-447.