|
|
(1- x)K0.5Na0.5(Nb0.95Ta0.05)O3-x(Bi0.5Yb0.5)0.95Li0.05ZrO3 陶瓷的性能 |
尹奇异( ), 张梦军( ), 斯凡, 林飞 |
合肥大学能源材料与化工学院 合肥 230601 |
|
Structure and Properties of a Novel Piezoelectric Zirconate-modified K0.5Na0.5(Nb0.95Ta0.05)O3 Ceramics |
YIN Qiyi( ), ZHANG Mengjun( ), SI Fan, LIN Fei |
School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China |
引用本文:
尹奇异, 张梦军, 斯凡, 林飞. (1- x)K0.5Na0.5(Nb0.95Ta0.05)O3-x(Bi0.5Yb0.5)0.95Li0.05ZrO3 陶瓷的性能[J]. 材料研究学报, 2025, 39(7): 542-550.
Qiyi YIN,
Mengjun ZHANG,
Fan SI,
Fei LIN.
Structure and Properties of a Novel Piezoelectric Zirconate-modified K0.5Na0.5(Nb0.95Ta0.05)O3 Ceramics[J]. Chinese Journal of Materials Research, 2025, 39(7): 542-550.
[1] |
Rahman A, Jiang M, Rao G, et al. Improved ferroelectric, piezoelectric, and dielectric properties in pure KNN translucent ceramics by optimizing the normal sintering method [J]. Ceram. Int., 2022, 48(14): 20251
|
[2] |
Zhao R J, Li Y L, Zheng Z S, et al. Phase structure regulation and enhanced piezoelectric properties of Li-doped KNN-based ceramics [J]. Mater. Chem. Phys., 2020, 245: 122806
|
[3] |
Zhao L, Wu W J, Zhao C L, et al. Comparison of contribution to phase boundary from A-site aliovalent dopants in high-performance KNN-based ceramics [J]. Phys. Chem. Chem. Phys., 2022, 24(45): 27670
doi: 10.1039/d2cp04523k
pmid: 36373615
|
[4] |
Batra K, Sinha N, Kumar B. Lead-free 0.95(K0.6Na0.4)NbO3-0.05(Bi0.5-Na0.5)ZrO3 ceramic for high temperature dielectric, ferroelectric and piezoelectric applications [J]. J. Alloy. Compd., 2020, 818: 152874
|
[5] |
He B, Liu W P, Zhou B W, et al. Softening effect of trace Fe-substituted potassium-sodium niobate-based lead-free piezoceramics [J]. J. Alloy. Compd., 2022, 909: 164718
|
[6] |
Wang X, Lv X, Ma Y C, et al. Deciphering the role of A-site ions of AZrO3-type dopants in (K, Na)NbO3 ceramics [J]. Acta Mater., 2023, 254: 118997
|
[7] |
Zheng R H, Yin Q Y, Cheng H W, et al. The effect of (Bi0.5Li0.5)0.9-Sr0.1ZrO3 substitution on the construction of polymorphic phase boundary and high curie temperature of K0.45Na0.55NbO3 piezoelectric ceramics [J]. J. Mater. Sci., 2023, 34(11): 954
|
[8] |
Zhang Y, Liu B H, Shen B, et al. Tolerance factor effect on the structure and properties of KNN based ceramics at orthorhombic–tetragonal phase boundary [J]. J. Mater. Sci.: Mater. Electr., 2017, 28(15): 11114
|
[9] |
Suewattana M, Singh D J. Local dynamics and structure of pure and Ta substituted (K1- x Na x ) NbO3 from first principles calculations [J]. Phys. Rev., 2010, 82B: 014114
|
[10] |
Huang Y L, Zhao C L, Wu B, et al. Diffused and successive phase transitions of (K, Na)NbO 3 - based ceramics with high strain and temperature insensitivity [J]. J. Am. Ceram. Soc., 2018, 102(5): 2648
|
[11] |
Xing J, Tan Z, Zheng T, et al. Research progress of high piezoelectric activity of potassium sodium niobate based lead-free ceramics [J]. Acta Physica Sinica, 2020, 69(12): 127707
|
[11] |
邢 洁, 谭 智, 郑 婷 等. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展 [J]. 物理学报, 2020, 69(12): 127707
|
[12] |
Zuo R Z, Fu J. Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics [J]. J. Am. Ceram. Soc., 2011, 94(5): 1467
|
[13] |
Wu B, Ma J, Wu W J, et al. Enhanced electrical properties, phase structure, and temperature-stable dielectric of (K0.48Na0.52)NbO3-Bi0.5Li0.5ZrO3 ceramics [J]. Ceram. Int., 2018, 44(1): 1172
|
[14] |
Xu Y F, Fu K, Liu K, et al. A state of the art review of the tribology of graphene/MoS2 nanocomposites [J]. Mater. Today Commun., 2023, 34: 105108
|
[15] |
Li Y L, Jia P W, Zhao R J, et al. Nanoscale domains in K0.48Na0.52Nb0.96Sb0.04O3-Bi0.5Na0.5ZrO3 ceramics enhance piezoelectric properties [J]. Mater. Chem. Phys., 2022, 277: 125575
|
[16] |
Malic B, Bernard J, Bencan A, et al. Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics [J]. J. Eur. Ceram. Soc., 2008, 28: 1191
|
[17] |
Zheng T, Wu W J, Wu J G, et al. Balanced development of piezoelectricity, Curie temperature, and temperature stability in potassium-sodium niobhrate lead-free ceramics [J]. J. Mater. Chem., 2016, 4C(41) : 9779
|
[18] |
Liao Y, Wang D M, Wang H, et al. Transformation of hardening to softening behaviors induced by Sb substitution in CuO-doped KNN-based piezoceramics [J]. Ceram. Int., 2019, 45(10): 13179
doi: 10.1016/j.ceramint.2019.03.254
|
[19] |
Shi H L, Zhao M, Zhang D Y, et al. Effect of Sb-induced oxygen octahedral distortion on piezoelectric performance and thermal stability of Pb(In,Nb)O3-Pb(Hf,Ti)O3 ceramics [J]. J. Mater. Sci. Technol., 2023, 161: 101
|
[20] |
Shi J K, Liu J Y, Xie S X, et al. Dopant tuned multi-functionality in barium titanate based lead-free piezoceramics [J]. J. Alloy. Compd., 2023, 942: 169092
|
[21] |
Tao H, Yin J, Wu W J, et al. Sharpening polycrystalline phase boundary for potassium sodium niobate ceramics with MnF2 modification [J]. J. Am. Ceram. Soc., 2022, 105(7): 5003
|
[22] |
Xi K B, Li Y L, Sun Y, et al. Effect of a lattice distortion strategy on the phase transition and properties in KNN‐based ceramics [J]. J. Am. Ceram. Soc., 2023, 106(1): 466
|
[23] |
Xie L X, Chen H, Xie Y N, et al. The roles of Sn4+ in affecting performance of Potassium Sodium Niobate ceramics [J]. J. Alloy. Compd., 2022, 899: 163290
|
[24] |
Yin M Y, Fang M X, Ji Y C, et al. Stabilized piezoelectricity upon ferro-ferro phase transition achieved by aging induced domain memory effect in acceptor doped lead-free ceramics [J]. Scr. Mater., 2022, 219: 114872
|
[25] |
Duong T A, Ahn C W, Kim B W, et al. Effects of SrTiO3 modification on the piezoelectric and strain properties of lead-free K0.5-Na0.5NbO3-based ceramics [J]. J. Electron. Mater., 2022, 51(4): 1490
|
[26] |
Shen Z Y, Xu Y, Li J F. Enhancement of Qm in CuO-doped compositionally optimized Li/Ta-modified (Na,K)NbO3 lead-free piezoceramics [J]. Ceram. Int., 2012, 38(): S331
|
[27] |
Chen J J, Wu T, Huang W S, et al. Giant piezoelectric response and structure evolution of Bi0.5(Na0.3K0.3Li(0.4- x )Ba x )0.5ZrO3 modified (K0.48Na0.52)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics [J]. Ceram. Int., 2024, 50: 14614
|
[28] |
Peng L, Gao X Q, Liu X K, et al. Synergism optimization of ferroelectric phase-transition temperature and piezoelectric properties of KNN-based ceramics by chemical composition regulation [J]. Mater. Today Commun., 2024, 38: 108214
|
[29] |
Kok S H W, Lee J, Chong W K, et al. Bismuth-rich Bi12O17Cl2 nanorods engineered with oxygen vacancy defects for enhanced photocatalytic nitrogen fixation [J]. J. Alloy. Compd., 2023, 952: 170015
|
[30] |
Liu Y L, Zhu Z R, Liu Y Q, et al. First principles insight on enhanced photocatalytic performance of sulfur-doped bismuth oxide iodate [J]. Mater. Sci. Semicond. Process., 2023, 165: 107672
|
[31] |
Lv X, Wu J, Zhang X X. Tuning the covalency of A-O bonds to improve the performance of KNN-based ceramics with multiphase coexistence [J]. ACS Appl. Mater. Interfaces, 2020, 12(44): 49795
|
[32] |
He B. Study on doping modification and properties of potassium-sodium niobate based piezoelectric ceramics [D]. Ji'nan: Qilu University of Technology, 2022
|
[32] |
何 波. 铌酸钾钠基压电陶瓷的掺杂改性及性能研究 [D]. 济南: 齐鲁工业大学, 2022
|
[33] |
Sun X X, Zhang J W, Lv X, et al. Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature [J]. J. Mater. Chem., 2019, 7A(28) : 16803
|
[34] |
Lay R, Deijs G S, Malmström J. The intrinsic piezoelectric properties of materials – a review with a focus on biological materials [J]. RSC Adv., 2021, 11(49): 30657
|
[35] |
Delgado-Tobón A E, Aperador-Chaparro W A, Misnaza-Rodríguez Y G. Evaluation of the lubricating power of chemical modified Sesame oil additivated with Cu and Al2O3 nanoparticles [J]. Dyna, 2018, 85(207): 93
|
[36] |
Elagouz A, Ali M K A, Hou X J, et al. Techniques used to improve the tribological performance of the piston ring-cylinder liner contact [J]. IOP Conf. Ser. Mater. Sci. Eng., 2019, 563: 022024
|
[37] |
Zheng T, Wu J G. Relationship between poling characteristics and phase boundaries of potassium-sodium niobate ceramics [J]. ACS Appl. Mater. Interfaces, 2016, 8(14): 9242
|
[38] |
Wang Y Q, Xiang G L, Gao L, et al. High piezoelectric performance and cost-effective Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 piezoelectric ceramics [J]. J. Electron. Mater., 2023, 52(5): 2986
|
[39] |
Wang T, Jiang M H, Li L, et al. Effects of MnO2-doping on growth, structure and electrical properties of lead-free piezoelectric K0.5Na0.5NbO3-BiAlO3 single crystals [J]. J. Alloy. Compd., 2023, 935: 168126
|
[40] |
Schultheiß J, Picht G, Wang J, et al. Ferroelectric polycrystals: Structural and microstructural levers for property-engineering via domain-wall dynamics [J]. Prog. Mater. Sci., 2023, 136: 101101
|
[41] |
Yang W W, Wang Y C, Li P, et al. Improving electromechanical properties in KNANS-BNZ ceramics by the synergy between phase structure modification and grain orientation [J]. J. Mater. Chem., 2020, 8C(18) : 6149
|
[42] |
Kannan M R, Logeswari A, Carry M W, et al. Synthesis and investigation of (1-x)K0.5Na0.5NbO3-(x)CaSnO3 lead free perovskite ceramics of high dielectric and piezoelectric properties for transducer applications [J]. J. Mater. Sci.-Mater. Electron., 2022, 33(12): 9224
|
[43] |
Yin Q Y, Wang C Z, Wang Y, et al. Structure and properties of (K0.5Na0.5)0.98Ag0.02Nb0.96Ta0.04O3 piezoelectric ceramics doped by CuO [J]. J. Mater. Sci.-Mater. Electron., 2018, 29(11): 9268
|
[44] |
Yang Y, Wang H, Li Y, et al. Phase coexistence induced strong piezoelectricity in K0.5Na0.5NbO3-based lead-free ceramics [J]. Dalton Trans., 2019, 48(28): 10676
doi: 10.1039/c9dt01735f
pmid: 31241106
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|