Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (7): 542-550    DOI: 10.11901/1005.3093.2024.406
  研究论文 本期目录 | 过刊浏览 |
(1- x)K0.5Na0.5(Nb0.95Ta0.05)O3-x(Bi0.5Yb0.5)0.95Li0.05ZrO3 陶瓷的性能
尹奇异(), 张梦军(), 斯凡, 林飞
合肥大学能源材料与化工学院 合肥 230601
Structure and Properties of a Novel Piezoelectric Zirconate-modified K0.5Na0.5(Nb0.95Ta0.05)O3 Ceramics
YIN Qiyi(), ZHANG Mengjun(), SI Fan, LIN Fei
School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
引用本文:

尹奇异, 张梦军, 斯凡, 林飞. (1- x)K0.5Na0.5(Nb0.95Ta0.05)O3-x(Bi0.5Yb0.5)0.95Li0.05ZrO3 陶瓷的性能[J]. 材料研究学报, 2025, 39(7): 542-550.
Qiyi YIN, Mengjun ZHANG, Fan SI, Fei LIN. Structure and Properties of a Novel Piezoelectric Zirconate-modified K0.5Na0.5(Nb0.95Ta0.05)O3 Ceramics[J]. Chinese Journal of Materials Research, 2025, 39(7): 542-550.

全文: PDF(9425 KB)   HTML
摘要: 

用传统固相烧结法制备了陶瓷材料(1-x)K0.5Na0.5(Nb0.95Ta0.05)O3-x(Bi0.5Yb0.5)0.95Li0.05ZrO3,使用X射线衍射仪、扫描电子显微镜、能谱仪等手段对其表征,研究了这种陶瓷材料的结构和性能。结果表明,锆酸铋镱锂(BYLZ)完全进入到KNNT晶格中生成了单一的钙钛矿结构: x = 0.0的陶瓷为O相,0.0 < x ≤ 0.02的陶瓷为O-T相,0.03 < x ≤ 0.04的陶瓷为R-O-T相,0.04 < x ≤ 0.05的陶瓷为T相。在x = 0.04多晶型相界区的陶瓷,其性能最佳(d33 = 305 pC/N,kp = 38.17%,εr = 1710,tanδ = 2.5%,Pr = 34.63 μC/cm2EC = 20.67 kV/cm,TC = 340 ℃)。

关键词 无机陶瓷材料无铅压电陶瓷固相烧结法多相共存    
Abstract

A novel piezoelectric ceramics (1-x)K0.5Na0.5(Nb0.95Ta0.05)O3-x(Bi0.5Yb0.5)0.95Li0.05ZrO3 was prepared by the conventional solid-phase sintering method, and then was characterized by means of XRD, SEM, EDS, etc. It can be determined that BYLZ incorporates completely into the KNNT lattice in an atomic substitution manner, thereby forming a single perovskite structure, namely, the ceramics is O phase for x = 0.0, O-T phase for x in the range 0.0 < x ≤ 0.02, R-O-T phase for x in the range 0.03 < x ≤ 0.04, and T phase for x in the range 0.04 < x ≤ 0.05. Performance tests show that ceramics achieve the best performance in the polymorphic phase boundary region of x = 0.04:i.e., d33 = 305 pC/N, kp = 38.17%, εr = 1710, tanδ = 2.5%, Pr = 34.63 μC/cm2, EC= 20.67 kV/cm, and TC = 340 °C.

Key wordsinorganic ceramic materials    lead-free piezoelectric ceramics    solid-phase sintering    multiphase coexistence
收稿日期: 2024-10-03     
ZTFLH:  TN384  
基金资助:安徽省教育厅自然科学基金(2022AH010096);2022年新时代教育素质工程(2022xscx146)
通讯作者: 尹奇异,教授,yinqyi@163.com,研究方向为压电/铁电材料、储能材料;
张梦军,3229880447@qq.com,研究方向为压电陶瓷
Corresponding author: YIN Qiyi, Tel: 19541820704, E-mail: yinqyi@163.com;
ZHANG Mengjun, Tel: 15156557941, E-mail: 3229880447@qq.com
作者简介: 尹奇异,男,1978年生,博士
图1  (1-x)KNNT-xBYLZ陶瓷的XRD谱
图2  陶瓷的低温介电常数εr
图3  XRD谱的Rietveld拟合曲线
xPhaseProportionSGα = (β = γ)a / nmb / nmc / nmc/a
0.01O44.5%Amm290°0.5630.3950.567
T55.5%P4mm90°0.4000.4000.3960.9925
0.02O13.0%Amm290°0.5670.3960.564
T87.0%P4mm90°0.3980.3980.3970.9975
0.03R9.1%R3c90°0.5640.5641.384
O3.5%Amm290°0.3980.5690.571
T87.4%P4mm90°0.3970.3970.4021.0126
0.04R17.3%R3c90°0.5800.5801.438
O3.1%Amm290°0.5670.3960.566
T88.6%P4mm90°0.3970.3970.4011.0100
表1  陶瓷(1-x)KNNT- xBYLZ的晶体结构参数
图4  (1-x)KNNT-xBYLZ陶瓷表面的微观形貌
图5  (1-x)KNNT-xBYLZ陶瓷的密度和相对密度与x的关系
图6  (1-x)KNNT-xBYLZ陶瓷的晶粒尺寸分布
图7  (1-x)KNNT-xBYLZ陶瓷的压电常数d33、平面机电耦合系数kp、介电常数εr和介电损耗tanδ与x的关系
图8  (1-x)KNNT-xBYLZ陶瓷的介电温谱和相图
图9  (1-x)KNNT-xBYLZ陶瓷的电滞回线、剩余极化强度Pr、矫顽场EC、介电常数与剩余极化强度之积εrPr和压电常数d33
Materiald33pC/NECkV·cm-1PrμC·cm-2εrTCoCReference
0.95(Na0.5K0.5)NbO3-0.05SrTiO313014.213.81352308[25]
0.95(K0.6Na0.4)NbO3-0.05(Bi0.5Na0.5)ZrO334019.58[4]
0.97(K0.5Na0.5)0.98-Ag0.02(Nb0.96Sb0.04)O3-0.03(Bi0.5Na0.5)ZrO3550250[41]
0.96K0.5Na0.5NbO3-0.04CaSnO343032168297[42]
0.865(K0.5Na0.5)0.98Ag0.02Nb0.96Ta0.04O3-0.035CuO-0.01Na2O34319.224.91382306[43]
0.96(K0.5Na0.5)NbO3-0.04[NaSbO3 +Bi0.5(Na0.8K0.2)0.5(Zr0.5Hf0.5)O3]4524414[44]
0.96K0.5Na0.5(Nb0.95Ta0.05)O3-0.04(Bi0.5Yb0.5)0.95Li0.05 ZrO330520.6734.631710340This work
表2  本文的实验数据与其他KNN基压电陶瓷各项电性能的对比
[1] Rahman A, Jiang M, Rao G, et al. Improved ferroelectric, piezoelectric, and dielectric properties in pure KNN translucent ceramics by optimizing the normal sintering method [J]. Ceram. Int., 2022, 48(14): 20251
[2] Zhao R J, Li Y L, Zheng Z S, et al. Phase structure regulation and enhanced piezoelectric properties of Li-doped KNN-based ceramics [J]. Mater. Chem. Phys., 2020, 245: 122806
[3] Zhao L, Wu W J, Zhao C L, et al. Comparison of contribution to phase boundary from A-site aliovalent dopants in high-performance KNN-based ceramics [J]. Phys. Chem. Chem. Phys., 2022, 24(45): 27670
doi: 10.1039/d2cp04523k pmid: 36373615
[4] Batra K, Sinha N, Kumar B. Lead-free 0.95(K0.6Na0.4)NbO3-0.05(Bi0.5-Na0.5)ZrO3 ceramic for high temperature dielectric, ferroelectric and piezoelectric applications [J]. J. Alloy. Compd., 2020, 818: 152874
[5] He B, Liu W P, Zhou B W, et al. Softening effect of trace Fe-substituted potassium-sodium niobate-based lead-free piezoceramics [J]. J. Alloy. Compd., 2022, 909: 164718
[6] Wang X, Lv X, Ma Y C, et al. Deciphering the role of A-site ions of AZrO3-type dopants in (K, Na)NbO3 ceramics [J]. Acta Mater., 2023, 254: 118997
[7] Zheng R H, Yin Q Y, Cheng H W, et al. The effect of (Bi0.5Li0.5)0.9-Sr0.1ZrO3 substitution on the construction of polymorphic phase boundary and high curie temperature of K0.45Na0.55NbO3 piezoelectric ceramics [J]. J. Mater. Sci., 2023, 34(11): 954
[8] Zhang Y, Liu B H, Shen B, et al. Tolerance factor effect on the structure and properties of KNN based ceramics at orthorhombic–tetragonal phase boundary [J]. J. Mater. Sci.: Mater. Electr., 2017, 28(15): 11114
[9] Suewattana M, Singh D J. Local dynamics and structure of pure and Ta substituted (K1- x Na x ) NbO3 from first principles calculations [J]. Phys. Rev., 2010, 82B: 014114
[10] Huang Y L, Zhao C L, Wu B, et al. Diffused and successive phase transitions of (K, Na)NbO 3 - based ceramics with high strain and temperature insensitivity [J]. J. Am. Ceram. Soc., 2018, 102(5): 2648
[11] Xing J, Tan Z, Zheng T, et al. Research progress of high piezoelectric activity of potassium sodium niobate based lead-free ceramics [J]. Acta Physica Sinica, 2020, 69(12): 127707
[11] 邢 洁, 谭 智, 郑 婷 等. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展 [J]. 物理学报, 2020, 69(12): 127707
[12] Zuo R Z, Fu J. Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics [J]. J. Am. Ceram. Soc., 2011, 94(5): 1467
[13] Wu B, Ma J, Wu W J, et al. Enhanced electrical properties, phase structure, and temperature-stable dielectric of (K0.48Na0.52)NbO3-Bi0.5Li0.5ZrO3 ceramics [J]. Ceram. Int., 2018, 44(1): 1172
[14] Xu Y F, Fu K, Liu K, et al. A state of the art review of the tribology of graphene/MoS2 nanocomposites [J]. Mater. Today Commun., 2023, 34: 105108
[15] Li Y L, Jia P W, Zhao R J, et al. Nanoscale domains in K0.48Na0.52Nb0.96Sb0.04O3-Bi0.5Na0.5ZrO3 ceramics enhance piezoelectric properties [J]. Mater. Chem. Phys., 2022, 277: 125575
[16] Malic B, Bernard J, Bencan A, et al. Influence of zirconia addition on the microstructure of K­0.5Na0.5NbO3 ceramics [J]. J. Eur. Ceram. Soc., 2008, 28: 1191
[17] Zheng T, Wu W J, Wu J G, et al. Balanced development of piezoelectricity, Curie temperature, and temperature stability in potassium-sodium niobhrate lead-free ceramics [J]. J. Mater. Chem., 2016, 4C(41) : 9779
[18] Liao Y, Wang D M, Wang H, et al. Transformation of hardening to softening behaviors induced by Sb substitution in CuO-doped KNN-based piezoceramics [J]. Ceram. Int., 2019, 45(10): 13179
doi: 10.1016/j.ceramint.2019.03.254
[19] Shi H L, Zhao M, Zhang D Y, et al. Effect of Sb-induced oxygen octahedral distortion on piezoelectric performance and thermal stability of Pb(In,Nb)O3-Pb(Hf,Ti)O3 ceramics [J]. J. Mater. Sci. Technol., 2023, 161: 101
[20] Shi J K, Liu J Y, Xie S X, et al. Dopant tuned multi-functionality in barium titanate based lead-free piezoceramics [J]. J. Alloy. Compd., 2023, 942: 169092
[21] Tao H, Yin J, Wu W J, et al. Sharpening polycrystalline phase boundary for potassium sodium niobate ceramics with MnF2 modification [J]. J. Am. Ceram. Soc., 2022, 105(7): 5003
[22] Xi K B, Li Y L, Sun Y, et al. Effect of a lattice distortion strategy on the phase transition and properties in KNN‐based ceramics [J]. J. Am. Ceram. Soc., 2023, 106(1): 466
[23] Xie L X, Chen H, Xie Y N, et al. The roles of Sn4+ in affecting performance of Potassium Sodium Niobate ceramics [J]. J. Alloy. Compd., 2022, 899: 163290
[24] Yin M Y, Fang M X, Ji Y C, et al. Stabilized piezoelectricity upon ferro-ferro phase transition achieved by aging induced domain memory effect in acceptor doped lead-free ceramics [J]. Scr. Mater., 2022, 219: 114872
[25] Duong T A, Ahn C W, Kim B W, et al. Effects of SrTiO3 modification on the piezoelectric and strain properties of lead-free K0.5-Na0.5NbO3-based ceramics [J]. J. Electron. Mater., 2022, 51(4): 1490
[26] Shen Z Y, Xu Y, Li J F. Enhancement of Qm in CuO-doped compositionally optimized Li/Ta-modified (Na,K)NbO3 lead-free piezoceramics [J]. Ceram. Int., 2012, 38(): S331
[27] Chen J J, Wu T, Huang W S, et al. Giant piezoelectric response and structure evolution of Bi0.5(Na0.3K0.3Li(0.4- x )Ba x )0.5ZrO3 modified (K0.48Na0.52)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics [J]. Ceram. Int., 2024, 50: 14614
[28] Peng L, Gao X Q, Liu X K, et al. Synergism optimization of ferroelectric phase-transition temperature and piezoelectric properties of KNN-based ceramics by chemical composition regulation [J]. Mater. Today Commun., 2024, 38: 108214
[29] Kok S H W, Lee J, Chong W K, et al. Bismuth-rich Bi12O17Cl2 nanorods engineered with oxygen vacancy defects for enhanced photocatalytic nitrogen fixation [J]. J. Alloy. Compd., 2023, 952: 170015
[30] Liu Y L, Zhu Z R, Liu Y Q, et al. First principles insight on enhanced photocatalytic performance of sulfur-doped bismuth oxide iodate [J]. Mater. Sci. Semicond. Process., 2023, 165: 107672
[31] Lv X, Wu J, Zhang X X. Tuning the covalency of A-O bonds to improve the performance of KNN-based ceramics with multiphase coexistence [J]. ACS Appl. Mater. Interfaces, 2020, 12(44): 49795
[32] He B. Study on doping modification and properties of potassium-sodium niobate based piezoelectric ceramics [D]. Ji'nan: Qilu University of Technology, 2022
[32] 何 波. 铌酸钾钠基压电陶瓷的掺杂改性及性能研究 [D]. 济南: 齐鲁工业大学, 2022
[33] Sun X X, Zhang J W, Lv X, et al. Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature [J]. J. Mater. Chem., 2019, 7A(28) : 16803
[34] Lay R, Deijs G S, Malmström J. The intrinsic piezoelectric properties of materials – a review with a focus on biological materials [J]. RSC Adv., 2021, 11(49): 30657
[35] Delgado-Tobón A E, Aperador-Chaparro W A, Misnaza-Rodríguez Y G. Evaluation of the lubricating power of chemical modified Sesame oil additivated with Cu and Al2O3 nanoparticles [J]. Dyna, 2018, 85(207): 93
[36] Elagouz A, Ali M K A, Hou X J, et al. Techniques used to improve the tribological performance of the piston ring-cylinder liner contact [J]. IOP Conf. Ser. Mater. Sci. Eng., 2019, 563: 022024
[37] Zheng T, Wu J G. Relationship between poling characteristics and phase boundaries of potassium-sodium niobate ceramics [J]. ACS Appl. Mater. Interfaces, 2016, 8(14): 9242
[38] Wang Y Q, Xiang G L, Gao L, et al. High piezoelectric performance and cost-effective Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 piezoelectric ceramics [J]. J. Electron. Mater., 2023, 52(5): 2986
[39] Wang T, Jiang M H, Li L, et al. Effects of MnO2-doping on growth, structure and electrical properties of lead-free piezoelectric K0.5Na0.5NbO3-BiAlO3 single crystals [J]. J. Alloy. Compd., 2023, 935: 168126
[40] Schultheiß J, Picht G, Wang J, et al. Ferroelectric polycrystals: Structural and microstructural levers for property-engineering via domain-wall dynamics [J]. Prog. Mater. Sci., 2023, 136: 101101
[41] Yang W W, Wang Y C, Li P, et al. Improving electromechanical properties in KNANS-BNZ ceramics by the synergy between phase structure modification and grain orientation [J]. J. Mater. Chem., 2020, 8C(18) : 6149
[42] Kannan M R, Logeswari A, Carry M W, et al. Synthesis and investigation of (1-x)K0.5Na0.5NbO3-(x)CaSnO3 lead free perovskite ceramics of high dielectric and piezoelectric properties for transducer applications [J]. J. Mater. Sci.-Mater. Electron., 2022, 33(12): 9224
[43] Yin Q Y, Wang C Z, Wang Y, et al. Structure and properties of (K0.5Na0.5)0.98Ag0.02Nb0.96Ta0.04O3 piezoelectric ceramics doped by CuO [J]. J. Mater. Sci.-Mater. Electron., 2018, 29(11): 9268
[44] Yang Y, Wang H, Li Y, et al. Phase coexistence induced strong piezoelectricity in K0.5Na0.5NbO3-based lead-free ceramics [J]. Dalton Trans., 2019, 48(28): 10676
doi: 10.1039/c9dt01735f pmid: 31241106
[1] 王军凯, 张远卓, 李赛赛, 葛胜涛, 宋健波, 张海军. Fe催化硅藻土碳热还原反应制备3C-SiC及其机理[J]. 材料研究学报, 2018, 32(10): 767-774.
[2] 刘莹莹, 万隆, 王俊沙. 溶胶凝胶原位成型陶瓷结合剂砂轮中碳化硅的改性[J]. 材料研究学报, 2017, 31(9): 659-664.
[3] 方必军, 刘星, 张震乾, 陈智慧, 丁建宁, 赵祥永, 罗豪甦. BCZT无铅压电陶瓷的铁电相变[J]. 材料研究学报, 2017, 31(4): 248-254.
[4] 王成 胡作启 伍双杰 王庆 赵旭. La2O3掺杂BST/Mg2TiO4微波复合陶瓷的制备和性能[J]. 材料研究学报, 2011, 25(1): 109-112.
[5] 陈书涛; 徐庆; 陈文; 周静 . (Na0.5Bi0.5)TiO3--BaTiO3的合成与压电性能[J]. 材料研究学报, 2004, 18(5): 524-528.