Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (6): 474-480    DOI: 10.11901/1005.3093.2024.381
  研究论文 本期目录 | 过刊浏览 |
无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究
韩磊磊1, 王文涛1,2(), 吴赟1, 陈嘉俊1, 赵勇1,3
1.磁浮技术与磁浮列车教育部重点实验室 西南交通大学材料科学与工程学院 成都 610031
2.西南交通大学电气工程学院 成都 610031
3.福建师范大学物理与能源学院 福州 350117
High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method
HAN Leilei1, WANG Wentao1,2(), WU Yun1, CHEN Jiajun1, ZHAO Yong1,3
1.Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2.School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China
3.College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
引用本文:

韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
Leilei HAN, Wentao WANG, Yun WU, Jiajun CHEN, Yong ZHAO. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. Chinese Journal of Materials Research, 2025, 39(6): 474-480.

全文: PDF(958 KB)   HTML
摘要: 

用无氟化学溶液法在YGdBCO带材超导层表面制备YBCO超导焊料,研究高温热处理对焊料结构和带材超导性能的影响。结果表明,将非晶前驱膜在795 ℃烧结1 h可获得(103)衍射峰较强且晶粒均匀分布的YBCO多晶膜。将多晶膜在820 ℃烧结30 min后可将其转化为具有(00l)取向的YBCO单晶膜即焊料。将表面有YBCO单晶膜的带材氧退火热处理后,其临界电流Ic与原带材接近,表明超导焊料的生长不影响带材的超导电性。

关键词 无机非金属材料高温生长工艺外延生长YBCO膜微观形貌临界电流    
Abstract

YBCO superconducting solders were prepared on YGdBCO superconducting layers of tapes by fluorine-free chemical solution method. The effect of high temperature heat treatment on the structure of solders and superconducting properties of tape was investigated. The results show that the YBCO polycrystalline film with strong (103) diffraction peak and uniform grain distribution was obtained by sintering the amorphous precursor film at 795 oC for 1 h. Then the polycrystalline film was transformed into YBCO single crystal film (solder) with (00l) orientation after sintering it at 820 oC for 30 min. After annealing in oxygen, the critical current Ic of the tape deposited with YBCO single crystal film is close to that of the original tape, indicating no obvious influence of the growth of superconducting solder on the superconductivity of the tape.

Key wordsinorganic non-metallic materials    high temperature growth process    epitaxial growth    YBCO film    microstructure    critical current
收稿日期: 2024-09-05     
ZTFLH:  TB34  
基金资助:四川省自然科学基金(2025ZNSFSC0360);中央高校基本科研基金(2682022ZTPY086)
通讯作者: 王文涛,副研究员,wtwang@swjtu.edu.cn,研究方向为高温超导材料及应用
Corresponding author: WANG Wentao, Tel: (028)87600787, E-mail: wtwang@swjtu.edu.cn
作者简介: 韩磊磊,男,2000年生,硕士生
IBAD/PLD YGdBCO CC
StructureAg/YGdBCO/CeO2/LaMnO3/MgO/Y2O3/Al2O3/Hasetlloy
Superconducting layer thickness~1 μm
Critical current102-133 A
Buffer layer thickness~0.2 μm
Substrate materialHastelloy
Substrate thickness~50 μm
Thickness of silver layer~1.5 μm
Size (Thickness × width)0.055 mm × 4.00 mm
表1  YGdBCO 超导带材的参数
图1  在带材超导层表面制备YBCO超导焊料的工艺流程
图2  在不同温度下在YGdBCO银带超导层制备的YBCO多晶膜的XRD谱以及(005)衍射峰的相对强度、半高宽和I(006)/I(005)峰强比
图3  原带超导层和在不同温度生长的YBCO多晶膜的SEM形貌
图4  原带材和沉积有YBCO多晶膜带材(795 ℃)的V-I曲线
图5  YBCO多晶膜在不同温度生长的单晶膜的XRD谱以及(005)衍射峰相对强度与半高宽和(103)衍射峰相对强度
图6  YBCO多晶膜在不同温度生长的单晶膜的SEM形貌
图7  多晶膜在820 ℃生长不同时间的单晶膜的XRD谱以及(005)衍射峰相对强度及其半高宽和(103)衍射峰相对强度
图8  YBCO多晶膜在820 ℃生长不同时间制备的单晶膜的SEM表面形貌
图9  YBCO多晶膜在820 ℃烧结30 min制备的单晶膜带材和原带材的V-I曲线
1 Hahn S, Kim K, Kim K, et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet[J]. Nature, 2019, 570(7762): 496
2 Liu J, Wang Q, Qin L, et al. World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet[J]. Supercond. Sci. Technol., 2020, 33(3): 03LT01
3 Wang M J, Wang W T, Liu L, et al. The electromagnetic properties of YGdBCO coated conductors with periodic micro-holes arrays[J]. J. Alloy. Compd., 2021, 877: 160138
4 Wen H H. Development of research on new high temperature superconductors[J]. Chin. J. Mater. Res., 2015, 29(4): 241
doi: 10.11901/1005.3093.2015.111
4 闻海虎. 新型高温超导材料研究进展[J]. 材料研究学报, 2015, 29(4): 241
doi: 10.11901/1005.3093.2015.111
5 Parkinson B. Design considerations and experimental results for MRI systems using HTS magnets[J]. Supercond. Sci. Technol., 2017, 30(1): 014009
6 Peng W, Li K, Nan J, et al. Critical current degradation and joint resistance rise of REBCO tape and coil during heat treatment[J]. IEEE Trans. Appl. Supercond., 2024, 34(5): 1
7 Park D K, Ahn M C, Kim H M, et al. Analysis of a joint method between superconducting YBCO coated conductors[J]. IEEE Trans. Appl. Supercond., 2007, 17(2): 3266
8 Lu J, Han K, Sheppard W R, et al. Lap joint resistance of YBCO coated conductors[J]. IEEE Trans. Appl. Supercond., 2010, 21(3): 3009
9 Zhang Y, Duckworth R C, Ha T T, et al. Solderability study of RABiTS-based YBCO coated conductors[J]. Physica C., 2011, 471(15-16): 437
10 Park Y, Lee M, Ann H, et al. A superconducting joint for GdBa2-Cu3O7 - δ -coated conductors[J]. NPG Asia Mater., 2014, 6(5): e98
11 Kulikov I V, Chernykh M Y, Krylova T S, et al. A Superconducting joint for 2G HTS tapes[J]. Tech. Phys. Lett., 2019, 45(4): 324
12 Huang D, Shang H, Xie B, et al. An efficient approach for superconducting joint of YBCO coated conductors[J]. Supercond. Sci. Technol., 2022, 35(7): 075004
13 Teranishi R, Hiramatsu K, Yasuyama S, et al. Superconducting joint of GdBa2Cu3O y coated conductors by crystallization of an additionally deposited precursor layer[J]. IEEE Trans. Appl. Supercond., 2019, 29(5): 1
14 Miyajima T, Teranishi R, Yasuyama S, et al. Microstructures of superconducting joint between GdBa2Cu3O y -coated conductors via additionally deposited precursor films[J]. Jpn. J. Appl. Phys., 2019, 58(5): 050913
15 Congreve J V J, Shi Y, Huang K Y, et al. Improving mechanical strength of YBCO bulk superconductors by addition of Ag[J]. IEEE Trans. Appl. Supercond., 2019, 29(5): 1
16 Shimoyama J. Superconducting joints for the 1.3 GHz persistent NMR magnet under JST-Mirai Program[J]. Supercond. Sci. Technol., 2023, 36(12): 121001
17 Hiramatsu K, Teranishi R, Yamada K, et al. Joint of REBa2Cu3O7 - δ coated conductors using metal organic deposition[J]. Physics Procedia, 2016, 81: 109
18 Ohki K, Nagaishi T, Kato T, et al. Fabrication, microstructure and persistent current measurement of an intermediate grown superconducting (iGS) joint between REBCO-coated conductors[J]. Supercond. Sci. Technol., 2017, 30(11): 115017
19 Kirchner A, Nielsch K, Hühne R. Towards a reliable bridge joint between REBCO coated conductors[J]. J. Phys. Conf. Ser., 2020, 1559(1): 012033
20 Wang M J, Wang W T, Liu L, et al. Effects of chemical etching on structure and properties of Y0.5Gd0.5Ba2Cu3O7 - z coated conductors[J]. Ceram. Int., 2018, 44(13): 15572
[1] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[2] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[3] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[4] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[5] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[6] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[7] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[8] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[9] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[10] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[11] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[12] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[13] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[14] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[15] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.