Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (6): 435-442    DOI: 10.11901/1005.3093.2024.343
  研究论文 本期目录 | 过刊浏览 |
SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究
杨亮1,2, 揣荣岩1, 薛丹1, 刘芳2, 刘昆霖2,3, 刘畅2, 蔡桂喜2,3()
1.沈阳工业大学信息科学与工程学院 沈阳 110870
2.中国科学院金属研究所 沈阳 110016
3.中国科学技术大学材料科学与工程学院 沈阳 110016
Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel
YANG Liang1,2, CHUAI Rongyan1, XUE Dan1, LIU Fang2, LIU Kunlin2,3, LIU Chang2, CAI Guixi2,3()
1.School of Information and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
Liang YANG, Rongyan CHUAI, Dan XUE, Fang LIU, Kunlin LIU, Chang LIU, Guixi CAI. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. Chinese Journal of Materials Research, 2025, 39(6): 435-442.

全文: PDF(15821 KB)   HTML
摘要: 

使用显微硬度仪、电子拉伸剪切试验机、SEM和IBIS等手段表征SUS301L不锈钢电阻点焊接头不同区域的微观组织、微区性能、断口形貌并研究其力学性能。结果表明,接头的熔核形貌呈椭圆形,分为母材区、热影响区和熔核区。接头熔核的边缘至核心区域的组织分布依次为柱状枝晶和等轴枝晶,接头的主要缺陷有熔核边缘的飞溅、熔核心部的缩孔和微裂纹,飞溅与缩孔的发生密切相关。熔核的直径是影响接头力学性能的关键因素,其力学性能与熔核直径呈正相关。随着双层板厚度的增加,单位熔核直径的增量产生的最大拉剪力增量随之显著增大。热影响区的硬度和强度均低于母材区和熔核区,导致在塑性环形成了一个软化区。这种软化区的强度较低,能承载的拉剪力较小,因此成为拉剪开裂的起始区域。拉剪断裂形式分为穿核断裂和沿核断裂,熔核的直径影响接头的断裂形式。

关键词 金属材料SUS301L不锈钢电阻点焊力学性能断裂机理显微组织    
Abstract

The microstructure, micro zone properties, fracture morphology, and mechanical properties of different areas for the resistance spot welding joint of SUS301L stainless steel are systematically characterized via microhardness tester, electronic tensile shear testing machine, SEM, and IBIS. The results indicate that the morphology of the fusion zone in the joint is elliptical and which can be differentiated into the base metal zone, heat affected zone, and nugget zone. The microstructure distribution from the edge of the fusion core to the core center is columnar structure and equiaxed structure in sequence. The main defects of the joint include sputters on the edge of the fusion core, shrinkage porosity in the fusion core, and micro cracks, and the sputtering phenomenon is closely related to the occurrence of shrinkage porosity. The size of the nugget diameter is a key indicator that affects the mechanical properties, and there is a positive correlation between the two. As the thickness of the double-layer plate increases, the maximum tensile and shear force increment caused by the increment of the unit nugget diameter also significantly increases. The hardness and strength of the heat affected zone are lower than those of the base metal zone and the fusion zone, which leads to the formation of a softening zone at the corona bond. Due to the lower strength of this zone, the tensile shear force it can bear is relatively small, making it the starting area for tensile shear cracking. The forms of tensile shear fracture may be differentiated into passing through-core fracture and along-core fracture, the nugget diameter will affect the fracture mode of the joint.

Key wordsmetallic materials    SUS301L stainless steel    resistance spot welding    mechanical properties    fracture mechanism    microstructure
收稿日期: 2024-08-15     
ZTFLH:  TG115.28  
基金资助:国家自然科学基金(61372019);辽宁省教育厅面上项目(LJKMZ20220478);辽宁省科技厅联合计划项目(应用基础研究)(2023JH2/101700279)
通讯作者: 蔡桂喜,研究员,gxcai@imr.ac.cn,研究方向为材料无损检测与评价
Corresponding author: CAI Guixi, Tel: 13709823129, E-mail: gxcai@imr.ac.cn
作者简介: 杨 亮,男,1992年生,博士生
CSiMnPSNiCrNFe
0.031.002.000.0450.037.1017.700.2Bal.
表1  母材化学的成分
图1  电阻点焊双层板接头工艺的示意图
图2  电阻点焊接头超声波检测结果与实际熔核对比
图3  电阻点焊接头的金相试样
图4  拉剪试样的尺寸
图5  电阻点焊接头横截面宏观形貌
图6  点焊接头的低倍组织和显微组织
图7  电阻点焊接头中的飞溅和缩孔缺陷
图8  显微硬度和强度实验装置和测量结果
图9  最大载荷与熔核直径的关系
图10  电阻点焊接头穿核断裂的显微组织
图11  电阻点焊接头沿核断裂的显微组织
图12  拉剪载荷作用下接头的受力分析
1 Hu T H, Wu T H, Pan H, et al. Progress in welding techniques to steel-aluminum alloy dissimilar welding joints[J]. J Iron Steel Res., 2023, 35(8): 928
1 胡天寒, 吴天海, 潘 华 等. 钢/铝异种材料接头焊接技术研究进展[J]. 钢铁研究学报, 2023, 35(8): 928
2 Hu J M, Bi J, Liu H W, et al. Prediction of resistance spot welding quality based on BPNN optimized by improved sparrow search algorithm[J]. Mater., 2022, 15(20): 7323
3 Tang J X, Wu M X, Shi L, et al. Aluminum/copper dissimilar metal double-sided friction stir welding formation and mechanical properties of joint[J]. Chin. J. Nonferr. Metal., 2022, 32(9): 2556
3 唐九兴, 吴明孝, 石 磊 等. 铝/铜异种金属双面搅拌摩擦焊接成形及接头力学性能[J]. 中国有色金属学报, 2022, 32(9): 2556
4 Chen Y J, Li S W, Meng X M, et al. Research progress of resistance spot welding of aluminum/steel dissimilar metals[J]. Mater. Rep., 2023, 37(13): 209
4 陈亚军, 李思伟, 孟宪明 等. 铝/钢异种材料电阻点焊研究进展[J]. 材料导报, 2023, 37(13): 209
5 Ao S, Shan H, Cui X T, et al. Effect of specimen width on the failure behavior in resistance spot weld tensile shear testing[J]. Weld. World, 2016, 60: 1095
6 Chung K, Noh W, Yang X, et al. Practical failure analysis of resistance spot welded advanced high-strength steel sheets[J]. Int. J. Plasticity, 2017, 94: 122
7 Liu J, Xu G, Ren L, et al. Simulation analysis of ultrasonic detection for resistance spot welding based on COMSOL Multiphysics[J]. J. Adv. Manufact. Technol., 2017, 93: 2089
8 Yi R T, Zhao D W, Wang Y X. Digital simulation of resistance spot welding considering the influence of phase transition[J]. Trans. Chin. Weld. Institu., 2013, 34(10): 71
8 易荣涛, 赵大伟, 王元勋. 考虑相变影响的电阻点焊数字模拟[J]. 焊接学报, 2013, 34(10): 71
9 FunabikiYuta, IyotaMuneyoshi, ShobuTakahisa, et al. Convection and joint characteristics in aluminum alloy melting zone during resistance spot welding of dissimilar Fe-Al material in external magnetic field[J]. J. Manufact. Proc., 2024, 115: 40
10 Arinez J F, Chang Q, Gao R X, et al. Artificial intelligence in advanced manufacturing: Current status and future outlook[J]. J. Manufact. Sci. Eng., 2020, 142: 111003
11 Zhou G R. Numerical simulation and metallographic study of resistance spot welding of high strength steel[J]. Mach. Build. Automa., 2019, 48(1): 142
11 周国荣. 高强钢电阻点焊数值模拟及金相研究[J]. 机械制造与自动化, 2019, 48(1): 142
12 Chen Y D, Chen F R. Microstructure and mechanical property of resistance spot welded joint of dissimilar steels of TRIP 980 high strength steel and SPCC low carbon steel[J]. Chin. J. Mater. Res, 2018, 32(3): 216
doi: 10.11901/1005.3093.2017.268
12 岑耀东, 陈芙蓉. TRIP980高强钢/SPCC低碳钢的异种钢板电阻点焊接头组织及力学性能研究[J]. 材料研究学报, 2018, 32(3): 216
doi: 10.11901/1005.3093.2017.268
13 Mvola B, Kah P, Martikainen J, et al. Dissimilar high- strength steels: fusion welded joints, mismatches, and challenges[J]. Rev. Adv. Mater. Sci., 2016, 44: 146
14 Liu J, Xu G, Ren L, et al. Defect intelligent identification in resistance spot welding ultrasonic detection based on wavelet packet and neural network[J]. Inter. J. Adv. Manufact. Tech., 2017, 90: 2581
15 Jiang Y L, Yang L, Han X H, et al. Study on cracking and fatigue property of stainless steel resistance spot welding under different conditions[J]. Chin. Mechan. Eng., 2021, 32(14): 1726
15 姜云禄, 杨 亮, 韩晓辉 等. 运行条件对不锈钢点焊疲劳性能影响及开裂分析[J]. 中国机械工程, 2021, 32(14): 1726
16 Mao Z D, Kan Y, Jiang Y L, et al. Overall residual stresses in the resistance spot welding joint of dissimilar aluminum alloys[J]. J. Mechan. Eng., 2020, 56(16): 84
16 毛镇东, 阚 盈, 姜云禄 等. 异种铝合金电阻点焊接头全场残余应力研究[J]. 机械工程学报, 2020, 56(16): 84
doi: 10.3901/JME.2020.16.084
17 Luo Z, Dong J W, Hu J M. Optimization of resistance spot welding quality prediction based on improved sparrow search algorithm for BPNN[J]. J. Tianjin Univ. (Sci. Tech.), 2024, 57(5): 445
17 罗 震, 董建伟, 胡建明. 基于改进麻雀搜索算法优化BPNN的电阻点焊质量预测[J]. 天津大学学报(自然科学与工程技术版), 2024, 57(5): 445
18 Guo T J, Zhang Q X, Sun X G, et al. Influence of adhesive sealant on resistance spot welding of stainless steel sheets with different thickness[J]. Chin. Mech. Eng., 2018, 29(24): 3009
18 郭太吉, 张庆鑫, 孙晓光 等. 密封胶对差厚不锈钢板电阻点焊接头的影响[J]. 中国机械工程, 2018, 29(24): 3009
19 Sun D Q, Zhang Y Y, Su L, et al. Effects of electrode morphology on microstructures and mechanical properties of spot welded Al-steel joints[J]. J. Mechan. Eng., 2016, 52(24): 36
19 孙大千, 张月莹, 苏 雷 等. 电极形状对铝-钢点焊接头组织及力学性能的影响[J]. 机械工程学报, 2016, 52(24): 36
doi: 10.3901/JME.2016.24.036
20 Cheng J L, Cheng D H, Qi A T, et al. Microstructure and mechanical properties of AZ31B magnesium alloy / 304 stainless steel resistance spot weld joint with high entropy alloy powder[J]. J. Mater. Eng., 2024, 52(1): 146
20 成家龙, 程东海, 亓安泰 等. 添加高熵合金粉末AZ31B镁合金/304不锈钢电阻点焊接头组织和力学性能[J]. 材料工程, 2024, 52(1): 146
doi: 10.11868/j.issn.1001-4381.2023.000615
21 Pashazadeh H, Gheisari Y, Hamedi M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm[J]. J. Intell. Manuf., 2016, 27: 549
22 Yang L, Chuai R, Cai G, et al. Ultrasonic non-destructive testing and evaluation of stainless-steel resistance spot welding based on spiral C-scan technique[J]. Sensors, 2024, 24(15): 4771
23 Li Z J, Cai G X, Zhang B, et al. Synthetic aperture imaging technology for ultrasonic spiral scanning detection of metal bars[J]. Acta Metall. Sin., 2024, 60(4): 559
doi: 10.11900/0412.1961.2022.00095
23 李振杰, 蔡桂喜, 张 博 等. 金属圆棒超声螺旋扫査检测的合成孔径成像技术[J]. 金属学报, 2024, 60(4): 559
doi: 10.11900/0412.1961.2022.00095
24 Cui H, Chen H N, Chen J, et al. Fea of evaluation material yield strength and strain hardening exponent using a spherical indentation[J]. Acta Metall. Sin., 2009, 45(2): 189
24 崔 航, 陈怀宁, 陈 静 等. 球形压痕法评价材料屈服强度和应变硬化指数的有限元分析[J]. 金属学报, 2009, 45(2): 189
25 Wu N. Study on fatigue behavior and fracture mechanism of aluminum/steel spot welded joints[J]. Machine China, 2023, (9): 108
25 吴 楠. 铝/钢点焊接头的疲劳行为及断裂机理研究[J]. 中国机械, 2023, (9): 108
26 Xu X, Li Z, Wan Z P, et al. Effect of long-term aging on properties of low expansion superalloy GH2909[J]. Chin. J. Mater. Res., 2021, 35(5): 330
doi: 10.11901/1005.3093.2020.314
26 徐 雄, 李 钊, 万志鹏 等. 长期时效对低膨胀高温合金GH2909性能的影响[J]. 材料研究学报, 2021, 35(5): 330
[1] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[2] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[3] 王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
[4] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[5] 邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
[6] 任学昌, 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦. 在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响[J]. 材料研究学报, 2025, 39(5): 329-342.
[7] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[8] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
[9] 吴玉程, 左彤, 谭晓月, 朱晓勇, 刘家琴. 第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构[J]. 材料研究学报, 2025, 39(5): 343-352.
[10] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[11] 胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.
[12] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[13] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[14] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[15] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.