Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (1): 1-10    DOI: 10.11901/1005.3093.2024.106
  研究论文 本期目录 | 过刊浏览 |
增材制造高温合金在不同温度下的拉伸性能与变形机制
王娜1,2, 李文彬2,3, 庞建超2(), 陈立佳1(), 高崇2, 邹成路2, 张辉3, 李守新2, 张哲峰2
1 沈阳工业大学材料科学与工程学院 沈阳 110870
2 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3 东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819
Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures
WANG Na1,2, LI Wenbin2,3, PANG Jianchao2(), CHEN Lijia1(), GAO Chong2, ZOU Chenglu2, ZHANG Hui3, LI Shouxin2, ZHANG Zhefeng2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
3 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
引用本文:

王娜, 李文彬, 庞建超, 陈立佳, 高崇, 邹成路, 张辉, 李守新, 张哲峰. 增材制造高温合金在不同温度下的拉伸性能与变形机制[J]. 材料研究学报, 2025, 39(1): 1-10.
Na WANG, Wenbin LI, Jianchao PANG, Lijia CHEN, Chong GAO, Chenglu ZOU, Hui ZHANG, Shouxin LI, Zhefeng ZHANG. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures[J]. Chinese Journal of Materials Research, 2025, 39(1): 1-10.

全文: PDF(26209 KB)   HTML
摘要: 

用增材制造激光选区熔化工艺制备典型的高温合金GH4169并在25~650 ℃测试其拉伸性能,用扫描电镜和透射电镜等手段表征其微观组织和拉伸变形行为,研究了测试温度对其力学性能的影响和变形机制。结果表明,在25 ℃、600 ℃和650 ℃测试这种合金的拉伸性能,其拉伸曲线较为光滑,在450~550 ℃测试的曲线呈锯齿状。随着测试温度的提高合金的抗拉强度从1458 MPa降低到1228 MPa,屈服强度则从1234 MPa下降到1051 MPa。SLM GH4169合金的拉伸强度与温度之间的关系大致是线性的。在25~450 ℃测试,合金中的强化相阻碍位错运动产生了强化作用;在550~650 ℃滑移为主要变形方式,δ相不利于拉伸性能。

关键词 金属材料GH4169合金实验温度微观组织变形机制    
Abstract

The typical superalloy GH4169 was prepared by selective laser melting (SLM), and then subjected to appropriate post-heat treatments, afterwardsits tensile properties was assessed in temperature range 25~650 oC. The microstructure evolution, tensile behavior at different temperatures were examinedby scanning electron microscopy and transmission electron microscopy, and the corresponding deformation mechanism of SLM GH4169 alloy was disscussed. The results show that the tensile curves of the of SLM GH4169 alloy are monotonic and smooth at 25 oC, 600 oC and 650 oC, but those at 450~550 oC are sawtooth-like. With the increasing test temperature, the tensile strength and yield strength of the SLM GH4169 alloy decreases from 1458 MPa to 1228 MPa and 1234 MPa to 1051 MPa respectively. The relationship between tensile strength and temperature of the SLM GH4169 is roughly linear with an error is less than 2%.The strengthening phases may obstruct the dislocation movement and plays a certain strengthening role in the temperature range 25~450 oC. While in the range 550~650 oC, slip bands may be the main deformation mode, and δ phases also has an adverse effect on tensile properties.

Key wordsmetallic materials    GH4169 superalloy    experimental temperature    microstructure    deformation mechanism
收稿日期: 2024-03-06     
ZTFLH:  TG132.3+2  
基金资助:国家自然科学基金(51871224);国家自然科学基金(52130002);国家自然科学基金(52321001);航空发动机及燃气轮机基础科学中心项目(P2022-C-IV-001-001)
通讯作者: 庞建超,副研究员,jcpang@imr.ac.cn,研究方向为材料疲劳与断裂;
陈立佳,教授,chenlijia@sut.edu.cn,研究方向为轻金属的疲劳行为及失效机理
Corresponding author: PANG Jianchao, Tel: (024)83978779, E-mail: jcpang@imr.ac.cn;
CHEN Lijia, Tel: (024)25496301, E-mail: chenlijia@sut.edu.cn
作者简介: 王 娜,女,1999年生,硕士生
NiCrNbMoTiAlCoCFe
50.0~55.017.0~21.04.75~5.452.8~3.30.85~1.150.2~0.7≤1.00.02~0.08Bal.
表1  SLM GH4169粉末的化学成分
Laser power / WScanning velocity / mm·s-1

Layer thickness

/ mm

Scanning spacing

/ mm

Rotation angle

/ (°)

2509004010067
表2  激光选区熔化工艺参数[22]
图1  拉伸试样的几何尺寸
图2  热处理态SLM GH4169合金在不同构建方向的SEM图片和晶界处的短棒状δ相、晶内针状δ相、γ″、γ′相的形貌
图3  SLM GH4169合金在不同温度下的拉伸性能
图4  SLM GH4169合金不同温度下的拉伸断口形貌
图5  SLM GH4169合金在不同温度的工程应力-应变曲线
图6  SLM GH4169合金在450 ℃和550 ℃拉伸曲线上的锯齿流变
图7  SLM GH4169强度与温度的关系
图8  SLM GH4169合金原始态组织图和在不同温度拉伸变形后的组织的EBSD分析
Original25 oC450 oC550 oC600 oC650 oC
LAGBS / %27.868.167.164.261.668.5
HAGBS / %72.231.928.335.838.431.5
表3  在不同温度拉伸实验后晶界的统计
图9  SLM GH4169合金原始态和在不同温度拉伸变形后的KAM图
图10  SLM GH4169合金在不同温度下拉伸实验后变形组织TEM的照片
1 Tian S G, Wang X, Xie J, et al. Characteristic and mechanism of phase transformation of GH4169G alloy during heat treatment [J]. Acta Metall. Sin., 2013, 49(7): 845
doi: 10.3724/SP.J.1037.2012.00712
1 田素贵, 王 欣, 谢 君 等. GH4169G合金热处理期间的相转变特征与机理分析 [J]. 金属学报, 2013, 49(7): 845
doi: 10.3724/SP.J.1037.2012.00712
2 Liu F, Sun W R, Yang S L, et al. Effect of A1 on impact strength of GH4169 alloy [J]. Chin. J. Mater. Res., 2008, (3): 230
2 刘 芳, 孙文儒, 杨树林 等. A1对GH4169合金冲击性能的影响 [J]. 材料研究学报, 2008, (3): 230
3 Diao W, Du L, Wang Y B, et al. Anisotropy of Ti6Al4V alloy fabricated by selective laser melting [J]. Chin. J. Mater. Res., 2022, 36(3): 231
doi: 10.11901/1005.3093.2021.105
3 刁 威, 杜 磊, 汪彦博 等. 选区激光熔化Ti6Al4V合金的各向异性 [J]. 材料研究学报, 2022, 36(3): 231
4 Li P J, Du J, Ni J T, et al. Application status of laser selective melting forming technology in the aerospace field [J]. Aerosp. Manuf. Tech., 2023, (5): 11
4 李沛剑, 杜 鹃, 倪江涛 等. 激光选区熔化成形技术在航空航天领域应用现状 [J]. 航天制造技术, 2023, (5): 11
5 Wang Y C, Lei L M, Shi L, et al. Scanning strategy dependent tensile properties of selective laser melted GH4169 [J]. Mater. Sci. Eng., 2020, 788A: 139616
6 Hou J, Dong J X, Yao Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy [J]. Chin. J. Eng., 2018, 40(7): 822
6 侯 杰, 董建新, 姚志浩. GH4169合金高温疲劳裂纹扩展的微观损伤机制 [J]. 工程科学学报, 2018, 40(7): 822
7 Liu Y C, Guo Q Y, Li C, et al. Recent Progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52(10): 1259
7 刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52(10): 1259
doi: 10.11900/0412.1961.2016.00290
8 Ye N Y, Cheng M, Zhang S H, et al. Influence of delta phase precipitation on static recrystallization of cold-rolled Inconel 718 alloy in solid solution treatment [J]. J. Iron Steel Res. Int., 2019, 26(2): 148
9 Gao Y, Zhang D Y, Cao M, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process [J]. Mater. Sci. Eng., 2019, 767A: 138327
10 Anderson M, Thielin A L, Bridier F, et al. δ Phase precipitation in Inconel 718 and associated mechanical properties [J]. Mater. Sci. Eng., 2017, 679A: 48
11 Popovich V A, Borisov E V, Popovich A A, et al. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting [J]. Mater. Des., 2017, 131: 12
12 Ram G D J, Reddy A V, Rao K P, et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds [J]. J. Mater. Process Tech., 2005, 167(1): 73
13 Lee S C, Chang S H, Tang T P, et al. Improvement in the microstructure and tensile properties of inconel 718 superalloy by HIP treatment [J]. Mater. Trans., 2006, 47(11): 2877
14 Song Z X, Wang D P, Wu Z S, et al. Ultrahigh cycle fatigue performance of GH4169 alloy by selective laser melting [J]. Mater. Mech. Eng., 2020, 44A(11): 72
14 宋宗贤, 王东坡, 吴志生 等. 激光选区熔化成形GH4169合金的超高周疲劳性能 [J]. 机械工程材料, 2020, 44(11): 72
doi: 10.11973/jxgccl202011013
15 Huang L, Cao Y, Li G H, et al. Microstructure characteristics and mechanical behaviour of a selective laser melted Inconel 718 alloy [J]. J. Mater. Res. Technol., 2020, 9(2): 2440
16 Kim S, Choi H, Lee J, et al. Room and elevated temperature fatigue crack propagation behavior of Inconel 718 alloy fabricated by laser powder bed fusion [J]. Int. J. Fatigue, 2020, 140: 105802
17 Zheng Q, Liu T, Wei J B, et al. Temperature dependence in tensile properties and deformation behavior of GH4169 alloy [J]. J. Iron Steel Res. Int., 2023, 30(12): 2566
18 Maj P, Zdunek J, Gizynski M, et al. Statistical analysis of the Portevin-Le Chatelier effect in Inconel 718 at high temperature [J]. Mater. Sci. Eng., 2014, 619A: 158
19 Liu M, Cai Y F, Wang Q Y, et al. The low cycle fatigue property, damage mechanism, and life prediction of additively manufactured Inconel 625: Influence of temperature [J]. Fatigue Fract. Eng. Mater. Struct., 2023, 46(10): 3829
20 Zhang H J, Li C, Guo Q Y, et al. Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 oC: The role of δ it phase [J]. Mater. Sci. Eng., 2018, 722A: 136
21 Wang Y, Shao W Z, Zhen L, et al. Tensile deformation behavior of superalloy 718 at elevated temperatures [J]. J. Alloy Compd., 2009, 471(1-2): 331
22 Li W B, Pang J C, Zhang H, et al. The high-cycle fatigue properties of selective laser melted Inconel 718 at room and elevated temperatures [J]. Mater. Sci. Eng., 2022, 836A: 142716
23 Zhang X Y, Chen Y, Cao L Y, et al. Microstructures and tensile properties of a grain-size gradient nickel- based superalloy [J]. J. Alloy Compd., 2023, 960: 170344
24 Li Z L, Lu C, Cheng G, et al. Microstructure and mechanical properties of selected laser meled GH4169 molded parts [J]. Appl. Laser, 2019, 39(1): 48
24 栗子林, 路 超, 程 格 等. 选区激光熔化GH4169成型件微观组织及力学性能研究 [J]. 应用激光, 2019, 39(1): 48
25 Hale C L, Rollings W S, Weaver M L. Activation energy calculations for discontinuous yielding in Inconel 718SPF [J]. Mater. Sci. Eng., 2001, 300A(1-2): 153
26 Prasad K, Sarkar R, Ghosal P, et al. Tensile deformation behaviour of forged disc of IN 718 superalloy at 650 oC [J]. Mater. Des., 2010, 31(9): 4502
27 Wang X G, Han G M, Cui C Y, et al. On the γ′ precipitates of the normal and inverse Portevin-Le Chatelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35(1): 84
28 Gopinath K, Gogia A K, Kamat S, et al. Dynamic strain ageing in Ni-base superalloy 720Li [J]. Acta Materialia, 2009, 57(4): 1243
29 Sarkar A, Nagesha A, Parameswaran P, et al. Insights into dynamic strain aging under cyclic creep with reference to strain burst: Some new observations and mechanisms. Part-1: Mechanistic aspects [J]. Mater. Sci. Eng., 2016, 660A: 213
30 Pavan A H V, Narayan R L, Li S H, et al. Mechanical behavior and dynamic strain ageing in Haynes®282 superalloy subjected to accelerated ageing [J]. Mater. Sci. Eng., 2022, 832A: 142486
31 Kamaya M, Wilkinson A J, Titchmarsh J M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nucl. Eng. Des., 2005, 235(6): 713
[1] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[2] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.
[3] 马修戈, 吴庆辉, 庞建超, 刘增乾, 李守新, 骆凯伦, 张哲峰. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39(2): 81-91.
[4] 袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
[5] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[6] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[7] 牟春浩, 陈文革, 余田亮, 马江江. 红装TA2/Q345复合管扩散焊接头的性能[J]. 材料研究学报, 2025, 39(1): 35-43.
[8] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[9] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[10] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[11] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[12] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[13] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[14] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[15] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.