|
|
增材制造高温合金在不同温度下的拉伸性能与变形机制 |
王娜1,2, 李文彬2,3, 庞建超2( ), 陈立佳1( ), 高崇2, 邹成路2, 张辉3, 李守新2, 张哲峰2 |
1 沈阳工业大学材料科学与工程学院 沈阳 110870 2 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 3 东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819 |
|
Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures |
WANG Na1,2, LI Wenbin2,3, PANG Jianchao2( ), CHEN Lijia1( ), GAO Chong2, ZOU Chenglu2, ZHANG Hui3, LI Shouxin2, ZHANG Zhefeng2 |
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China 3 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China |
引用本文:
王娜, 李文彬, 庞建超, 陈立佳, 高崇, 邹成路, 张辉, 李守新, 张哲峰. 增材制造高温合金在不同温度下的拉伸性能与变形机制[J]. 材料研究学报, 2025, 39(1): 1-10.
Na WANG,
Wenbin LI,
Jianchao PANG,
Lijia CHEN,
Chong GAO,
Chenglu ZOU,
Hui ZHANG,
Shouxin LI,
Zhefeng ZHANG.
Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures[J]. Chinese Journal of Materials Research, 2025, 39(1): 1-10.
1 |
Tian S G, Wang X, Xie J, et al. Characteristic and mechanism of phase transformation of GH4169G alloy during heat treatment [J]. Acta Metall. Sin., 2013, 49(7): 845
doi: 10.3724/SP.J.1037.2012.00712
|
1 |
田素贵, 王 欣, 谢 君 等. GH4169G合金热处理期间的相转变特征与机理分析 [J]. 金属学报, 2013, 49(7): 845
doi: 10.3724/SP.J.1037.2012.00712
|
2 |
Liu F, Sun W R, Yang S L, et al. Effect of A1 on impact strength of GH4169 alloy [J]. Chin. J. Mater. Res., 2008, (3): 230
|
2 |
刘 芳, 孙文儒, 杨树林 等. A1对GH4169合金冲击性能的影响 [J]. 材料研究学报, 2008, (3): 230
|
3 |
Diao W, Du L, Wang Y B, et al. Anisotropy of Ti6Al4V alloy fabricated by selective laser melting [J]. Chin. J. Mater. Res., 2022, 36(3): 231
doi: 10.11901/1005.3093.2021.105
|
3 |
刁 威, 杜 磊, 汪彦博 等. 选区激光熔化Ti6Al4V合金的各向异性 [J]. 材料研究学报, 2022, 36(3): 231
|
4 |
Li P J, Du J, Ni J T, et al. Application status of laser selective melting forming technology in the aerospace field [J]. Aerosp. Manuf. Tech., 2023, (5): 11
|
4 |
李沛剑, 杜 鹃, 倪江涛 等. 激光选区熔化成形技术在航空航天领域应用现状 [J]. 航天制造技术, 2023, (5): 11
|
5 |
Wang Y C, Lei L M, Shi L, et al. Scanning strategy dependent tensile properties of selective laser melted GH4169 [J]. Mater. Sci. Eng., 2020, 788A: 139616
|
6 |
Hou J, Dong J X, Yao Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy [J]. Chin. J. Eng., 2018, 40(7): 822
|
6 |
侯 杰, 董建新, 姚志浩. GH4169合金高温疲劳裂纹扩展的微观损伤机制 [J]. 工程科学学报, 2018, 40(7): 822
|
7 |
Liu Y C, Guo Q Y, Li C, et al. Recent Progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52(10): 1259
|
7 |
刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52(10): 1259
doi: 10.11900/0412.1961.2016.00290
|
8 |
Ye N Y, Cheng M, Zhang S H, et al. Influence of delta phase precipitation on static recrystallization of cold-rolled Inconel 718 alloy in solid solution treatment [J]. J. Iron Steel Res. Int., 2019, 26(2): 148
|
9 |
Gao Y, Zhang D Y, Cao M, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process [J]. Mater. Sci. Eng., 2019, 767A: 138327
|
10 |
Anderson M, Thielin A L, Bridier F, et al. δ Phase precipitation in Inconel 718 and associated mechanical properties [J]. Mater. Sci. Eng., 2017, 679A: 48
|
11 |
Popovich V A, Borisov E V, Popovich A A, et al. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting [J]. Mater. Des., 2017, 131: 12
|
12 |
Ram G D J, Reddy A V, Rao K P, et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds [J]. J. Mater. Process Tech., 2005, 167(1): 73
|
13 |
Lee S C, Chang S H, Tang T P, et al. Improvement in the microstructure and tensile properties of inconel 718 superalloy by HIP treatment [J]. Mater. Trans., 2006, 47(11): 2877
|
14 |
Song Z X, Wang D P, Wu Z S, et al. Ultrahigh cycle fatigue performance of GH4169 alloy by selective laser melting [J]. Mater. Mech. Eng., 2020, 44A(11): 72
|
14 |
宋宗贤, 王东坡, 吴志生 等. 激光选区熔化成形GH4169合金的超高周疲劳性能 [J]. 机械工程材料, 2020, 44(11): 72
doi: 10.11973/jxgccl202011013
|
15 |
Huang L, Cao Y, Li G H, et al. Microstructure characteristics and mechanical behaviour of a selective laser melted Inconel 718 alloy [J]. J. Mater. Res. Technol., 2020, 9(2): 2440
|
16 |
Kim S, Choi H, Lee J, et al. Room and elevated temperature fatigue crack propagation behavior of Inconel 718 alloy fabricated by laser powder bed fusion [J]. Int. J. Fatigue, 2020, 140: 105802
|
17 |
Zheng Q, Liu T, Wei J B, et al. Temperature dependence in tensile properties and deformation behavior of GH4169 alloy [J]. J. Iron Steel Res. Int., 2023, 30(12): 2566
|
18 |
Maj P, Zdunek J, Gizynski M, et al. Statistical analysis of the Portevin-Le Chatelier effect in Inconel 718 at high temperature [J]. Mater. Sci. Eng., 2014, 619A: 158
|
19 |
Liu M, Cai Y F, Wang Q Y, et al. The low cycle fatigue property, damage mechanism, and life prediction of additively manufactured Inconel 625: Influence of temperature [J]. Fatigue Fract. Eng. Mater. Struct., 2023, 46(10): 3829
|
20 |
Zhang H J, Li C, Guo Q Y, et al. Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 oC: The role of δ it phase [J]. Mater. Sci. Eng., 2018, 722A: 136
|
21 |
Wang Y, Shao W Z, Zhen L, et al. Tensile deformation behavior of superalloy 718 at elevated temperatures [J]. J. Alloy Compd., 2009, 471(1-2): 331
|
22 |
Li W B, Pang J C, Zhang H, et al. The high-cycle fatigue properties of selective laser melted Inconel 718 at room and elevated temperatures [J]. Mater. Sci. Eng., 2022, 836A: 142716
|
23 |
Zhang X Y, Chen Y, Cao L Y, et al. Microstructures and tensile properties of a grain-size gradient nickel- based superalloy [J]. J. Alloy Compd., 2023, 960: 170344
|
24 |
Li Z L, Lu C, Cheng G, et al. Microstructure and mechanical properties of selected laser meled GH4169 molded parts [J]. Appl. Laser, 2019, 39(1): 48
|
24 |
栗子林, 路 超, 程 格 等. 选区激光熔化GH4169成型件微观组织及力学性能研究 [J]. 应用激光, 2019, 39(1): 48
|
25 |
Hale C L, Rollings W S, Weaver M L. Activation energy calculations for discontinuous yielding in Inconel 718SPF [J]. Mater. Sci. Eng., 2001, 300A(1-2): 153
|
26 |
Prasad K, Sarkar R, Ghosal P, et al. Tensile deformation behaviour of forged disc of IN 718 superalloy at 650 oC [J]. Mater. Des., 2010, 31(9): 4502
|
27 |
Wang X G, Han G M, Cui C Y, et al. On the γ′ precipitates of the normal and inverse Portevin-Le Chatelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35(1): 84
|
28 |
Gopinath K, Gogia A K, Kamat S, et al. Dynamic strain ageing in Ni-base superalloy 720Li [J]. Acta Materialia, 2009, 57(4): 1243
|
29 |
Sarkar A, Nagesha A, Parameswaran P, et al. Insights into dynamic strain aging under cyclic creep with reference to strain burst: Some new observations and mechanisms. Part-1: Mechanistic aspects [J]. Mater. Sci. Eng., 2016, 660A: 213
|
30 |
Pavan A H V, Narayan R L, Li S H, et al. Mechanical behavior and dynamic strain ageing in Haynes®282 superalloy subjected to accelerated ageing [J]. Mater. Sci. Eng., 2022, 832A: 142486
|
31 |
Kamaya M, Wilkinson A J, Titchmarsh J M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nucl. Eng. Des., 2005, 235(6): 713
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|