Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (9): 711-720    DOI: 10.11901/1005.3093.2023.431
  研究论文 本期目录 | 过刊浏览 |
珠光体重轨钢疲劳裂纹尖端的应力应变场
岑耀东(), 计春娇, 包喜荣, 王晓东, 陈林, 董瑞
内蒙古科技大学材料科学与工程学院 包头 014010
Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel
CEN Yaodong(), JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui
School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
引用本文:

岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
Yaodong CEN, Chunjiao JI, Xirong BAO, Xiaodong WANG, Lin CHEN, Rui DONG. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. Chinese Journal of Materials Research, 2024, 38(9): 711-720.

全文: PDF(14734 KB)   HTML
摘要: 

用扫描电镜(SEM)观察不同冷速的在线轧态、在线热处理态、实验室热处理态(冷速递增)珠光体重轨钢的珠光体片层,用疲劳试验机和应变仪测定重轨钢的拉-拉疲劳实验中长度不同的裂纹尖端应变场云图并基于Abaqus建立应力和应变模型,研究重轨钢的疲劳裂纹尖端的力学行为。结果表明:随着冷速的递增珠光体片层的间距递减,随着疲劳裂纹的扩展裂纹周围的应力场强和裂纹尖端的应力强度因子K增大,应力场呈显著的“蝴蝶状”,其中实验室热处理态重轨钢长度为1、2、3 mm处裂纹的应力强度因子K分别为13.53、14.58和15.54 MPa·m1/2,远比相同裂纹长度的在线轧态和在线热处理态重轨钢的大。随着疲劳裂纹长度的增大,裂纹尖端附近等效应变区域增大。三种冷速的重轨钢的裂纹长度相同时,随着珠光体片层间距的递减裂纹尖端等效应变值随之递减,裂纹长度为较长的3 mm时等效应变值模拟结果分别为0.074、0.067、0.055,而应变实验分别为0.082、0.064、0.058。模拟仿真结果与应变场实验结果最大误差为9.7%,验证了模型的可靠性。模拟和实验结果均表明,重轨钢珠光体片层间距越小则扩展过程中的疲劳裂纹其尖端的应力强度因子K越大,产生的等效应变越小,其抵抗断裂能力越强和疲劳性能越高。

关键词 金属材料重轨钢组织疲劳断裂裂纹扩展应力应变    
Abstract

The fatigue crack propagation of heavy rail steel has a very complex relationship with the stress and strain at the crack tip, but there is currently little research on this mechanism. This article takes pearlite heavy rail steel as the research object under three conditions (increasing cooling rate): online rolling state, online heat treatment state, and laboratory heat treatment state. The pearlite layers at different cooling rates were observed using scanning electron microscopy, and the tensile fatigue crack and stress field cloud map at the crack tip of the heavy rail steel were measured using fatigue testing machines and strain gauges. Then, a stress and strain model was established based on Abaqus, the results indicate that as the cooling rate increases, the interlayer spacing of pearlite decreases; With the fatigue crack propagation, the stress field strength around the crack and the Stress intensity factor k at the crack tip increase, and the stress field is more significant in the "butterfly" shape. The Stress intensity factor of the laboratory heat treated heavy rail steel at the crack length of 1, 2, 3 mm is 13.53, 14.58, and 15.54 MPa·m1/2, respectively, which is far greater than that of the rolled and heat treated heavy rail steel at the same crack length; As the fatigue crack length increases, the equivalent strain area near the crack tip increases. At the same crack length, the equivalent strain at the crack tip of three kinds of heavy rail steels with cooling rate decreases with the decrease of pearlite lamellae. The simulation results of equivalent strain at a longer crack length of 3 mm are 0.074, 0.067 and 0.055 respectively, while the strain experimental results are 0.082, 0.064 and 0.058 respectively. The maximum error between the simulation results and the strain field experimental results is 5.1%, which verifies the model. Both simulation and experimental results show that the smaller the pearlite lamella is, the larger the Stress intensity factor at the crack tip is during the fatigue crack growth process of heavy rail steel, the smaller the equivalent strain area is, the stronger the fracture resistance is, and the better the fatigue performance is.

Key wordsmetallic materials    heavy rail steel    organization    fatigue fracture    crack propagation    stress-strain
收稿日期: 2023-08-30     
ZTFLH:  TG111  
基金资助:内蒙古自治区重点研发和成果转化计划(2023YFHH0036);内蒙古自然科学基金(2024LHMS05033);内蒙古自治区直属高校基本科研业务费项目(2023QNJS002, 2023YXXS007, 2024YXXS039);国家自然科学基金(52161008)
通讯作者: 岑耀东,副教授,cydtgyx@163.com, 研究方向为金属材料疲劳断裂
Corresponding author: CEN Yaodong, Tel: (0472)5951536, E-mail: cydtgyx@163.com
作者简介: 岑耀东,男,1982年生,博士
CSiMnVCrRE (Ce and La ratio)
0.760.610.890.070.280.002
表1  珠光体重轨钢的化学成分
图1  CT疲劳试验设备
Samples1#2#3#
Elastic modulus/MPa196000210000230000
Poisson's ratio (ν)0.270.30.3
表2  三种试样的弹性模量和泊松比
图2  技术路线图
图3  CT网格模型和网格受力
Fatigue load spectrumLoad / kNStress ratio, RFrequency / HzLoad form
Load Ⅰ80.545Sine wave
Load Ⅱ40.545Sine wave
表3  Franc3D模型参数
图4  Franc3D图
图5  三种试样的光学显微组织
SamplesCooling processMicrostructureLayers spacing / nmGrain size / μm
1#Air coolingPearlite324.620.73
2#Wind CoolingPearlite133.913.38
3#560oC-30 sPearlite105.97.90
表4  三种试样的微观组织类型、片层大小、晶粒尺寸
图6  三种试样的扫描电镜显微组织
图7  三种试样的珠光体片层
图8  1#、2#、3#试样的裂纹尖端应力云图
Crack lengths1 mm2 mm3 mm
1#10.0111.1413.53
2#10.5712.8014.58
3#11.2013.6515.54
表5  疲劳裂纹尖端最大应力强度因子K
Crack lengths1 mm2 mm3 mm
1#181123235634281811
2#233184362216451513
3#373151560202706745
表6  三种试样的循环次数
图9  1#、2#、3#试样的裂纹尖端应变云图
图10  长度不同的裂纹尖端应变场的变化
Crack lengths1 mm2 mm3 mm
1#8 × 10413 × 10415 × 104
2#12 × 10420 × 10422 × 104
3#40 × 10450 × 10453 × 104
表7  三种试样的循环次数
图11  1#、2#、3#试样的裂纹尖端应变云图
图12  裂纹尖端等效应变
Crack length1 mm2 mm3 mm
Method and error rateSimulationStrain testError rateSimulationStrain testError rateSimulationStrain testError rate
1#0.0490.0513.9%0.0690.06113.1%0.0740.0829.7%
2#0.0420.03616.7%0.0600.05020%0.0670.0644.7%
3#0.0210.02100.0350.04928.6%0.0550.0585.1%
表8  最大等效应变
1 Jia X Y, Li G Q, Liu X B, et al. Factors influencing fatigue crack initiation of rail for heavy haul railway [J]. China Railw. Sci., 2020, 41(4): 40
1 贾昕昱, 黎国清, 刘秀波 等. 重载铁路钢轨疲劳裂纹萌生影响因素 [J]. 中国铁道科学, 2020, 41(4): 40
2 Zhao X, Wen Z F, Wang H Y, et al. Research progress on wheel/rail rolling contact fatigue of rail transit in China [J]. J. Traffic Transp. Eng., 2021, 21(1): 1
2 赵 鑫, 温泽峰, 王衡禹 等. 中国轨道交通轮轨滚动接触疲劳研究进展 [J]. 交通运输工程学报, 2021, 21(1): 1
3 Wang J P, Zhou Y, Shen G. Effect of rail hardness on fatigue cracks initiation and rail wear [J]. J. Southwest Jiaotong Univ., 2021, 56(3): 611
3 王军平, 周 宇, 沈 钢. 钢轨硬度对疲劳裂纹萌生和钢轨磨耗的影响 [J]. 西南交通大学学报, 2021, 56(3): 611
4 Zuo Y, Zhou S T, Li Z D. Effect of V and Si on microstructure and mechanical properties of medium-carbon pearlitic steels for wheel [J]. Chin. J. Mater. Res., 2016, 30(6): 401
doi: 10.11901/1005.3093.2015.589
4 左 越, 周世同, 李昭东 等. V和Si对珠光体车轮钢显微组织和力学性能的影响规律 [J]. 材料研究学报, 2016, 30(6): 401
5 Liu J P, Zhang Y H, Tian C H, et al. Formation mechanism and maintenance strategy of rail squat in Chinese high-speed railway [J]. China Railw. Sci., 2022, 43(2): 40
5 刘佳朋, 张银花, 田常海 等. 我国高速铁路钢轨隐伤形成机理及维护策略 [J]. 中国铁道科学, 2022, 43(2): 40
6 Zhang Z F, Liu R, Zhang Z J, et al. Exploration on the unified model for fatigue properties prediction of metallic materials [J]. Acta Metall. Sin., 2018, 54(11): 1693
doi: 10.11900/0412.1961.2018.00331
6 张哲峰, 刘 睿, 张振军 等. 金属材料疲劳性能预测统一模型探索 [J]. 金属学报, 2018, 54(11): 1693
doi: 10.11900/0412.1961.2018.00331
7 Rodríguez-Arana B, San Emeterio A, Alvarado U, et al. Prediction of rolling contact fatigue behavior in rails using crack initiation and growth models along with multibody simulations [J]. Appl. Sci., 2021, 11(3): 1026
8 Guo Z J, Yin H. Fatigue crack detection of heavy duty railway track based on decision fusion analysis [J]. Int. J. Mater. Prod. Technol., 2022, 65(1): 14
9 Cheng Z N, Zhou Y, Li J P, et al. Crack propagation and rail surface spalling mechanism based on peridynamics [J]. J. Tongji Univ. (Nat. Sci.), 2023, 51(6): 912
9 程中宁, 周 宇, 李骏鹏 等. 基于近场动力学的裂纹扩展及轨面剥离掉块成因机理 [J]. 同济大学学报(自然科学版), 2023, 51(6): 912
10 Shen M X, Rong B, Qin T, et al. Study on wear behavior and debris particles emission characteristics induced by wheel-rail rolling contact under frequent start-stop conditions [J]. J. Mech. Eng., 2022, 58(3): 194
doi: 10.3901/JME.2022.03.194
10 沈明学, 容 彬, 秦 涛 等. 频繁启停工况下轮轨滚动接触磨损行为与磨屑颗粒排放特性研究 [J]. 机械工程学报, 2022, 58(3): 194
doi: 10.3901/JME.2022.03.194
11 Nejad R M, Shariati M, Farhangdoost K. Prediction of fatigue crack propagation and fractography of rail steel [J]. Theor. Appl. Fract. Mech., 2019, 101: 320
12 Fang X Y, Zhang H N, Ma D W. Influence of initial crack on fatigue crack propagation with mixed mode in U71Mn rail subsurface [J]. Eng. Failure Anal., 2022, 136: 106220
13 Ma X C, Liu L Y, Zhang P F, et al. Numerical method for predicting rail fatigue crack initiation with peridynamic theory [J]. Tribology, 2020, 40(5): 608
13 马晓川, 刘林芽, 张鹏飞 等. 近场动力学框架下钢轨疲劳裂纹萌生预测的数值方法研究 [J]. 摩擦学学报, 2020, 40(5): 608
14 Speed Hasan N., test fatigue, and P 2 load limit : fatigue strength of railroad rail [J]. J. Transp. Eng., 2020, 146A(1) : 061901
15 Akama M, Kiuchi A. Fatigue crack growth under non-proportional mixed mode I/III loading in rail and wheel steel [J]. Tetsu-to-Hagané, 2019, 104(11): 689
16 Gao R P, Liu M M, Wang B, et al. Influence of stress intensity factor on rail fatigue crack propagation by finite element method [J]. Materials, 2021, 14(19): 5720
17 Bonniot T, Doquet V, Mai S H. Mixed mode II and III fatigue crack growth in a rail steel [J]. Int. J. Fatigue, 2018, 115: 42
18 Cen Y D, Chen L, Ji C J, et al. Fatigue crack growth behavior of eutectoid steel rail [J]. J. Wuhan Univ. Technol.-Mat. Sci., 2022, 37(3): 507
19 Cen Y D, Chen L, Dong R, et al. Effect of quenching rate on fatigue crack growth of hypereutectoid rail steel [J]. J. Mater. Sci., 2020, 55(30): 15033
20 Cen Y D, Chen L, Dong R, et al. Effect of self-tempering on fatigue crack growth of heavy rail steel [J]. Mater. Rep., 2021, 35(12): 12136
20 岑耀东, 陈 林, 董 瑞 等. 自回火对重轨钢疲劳裂纹扩展行为的影响 [J]. 材料导报, 2021, 35(12): 12136
21 Cen Y D, Guo Y H, Ma X, et al. Bending fatigue crack propagation behavior of U75V heavy rail steel [J]. J. Mater. Eng., 2023, 51(1): 122
doi: 10.11868/j.issn.1001-4381.2022.000077
21 岑耀东, 郭曜珲, 马 潇 等. U75V+重轨钢弯曲疲劳裂纹扩展行为 [J]. 材料工程, 2023, 51(1): 122
doi: 10.11868/j.issn.1001-4381.2022.000077
22 Chen L, Dai Y H, Cui J W, et al. Optimization of quenching process and fatigue crack growth behavior of microalloyed rail [J]. J. Mech. Eng., 2022, 58(14): 233
doi: 10.3901/JME.2022.14.233
22 陈 林, 戴宇恒, 崔健伟 等. 微合金化钢轨淬火工艺的优化及其疲劳裂纹扩展行为研究 [J]. 机械工程学报, 2022, 58(14): 233
[1] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[5] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[6] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[8] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[9] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[10] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[11] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[12] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[13] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[14] 景婷, 梁哲铭, 于洋. 高温合金基于二次K熵的疲劳扩展声发射特征[J]. 材料研究学报, 2024, 38(7): 490-498.
[15] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.