材料研究学报, 2024, 38(9): 711-720 DOI: 10.11901/1005.3093.2023.431

研究论文

珠光体重轨钢疲劳裂纹尖端的应力应变场

岑耀东,, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞

内蒙古科技大学材料科学与工程学院 包头 014010

Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel

CEN Yaodong,, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui

School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

通讯作者: 岑耀东,副教授,cydtgyx@163.com, 研究方向为金属材料疲劳断裂

责任编辑: 吴岩

收稿日期: 2023-08-30   修回日期: 2023-10-26  

基金资助: 内蒙古自治区重点研发和成果转化计划(2023YFHH0036)
内蒙古自然科学基金(2024LHMS05033)
内蒙古自治区直属高校基本科研业务费项目(2023QNJS002, 2023YXXS007, 2024YXXS039)
国家自然科学基金(52161008)

Corresponding authors: CEN Yaodong, Tel:(0472)5951536, E-mail:cydtgyx@163.com

Received: 2023-08-30   Revised: 2023-10-26  

Fund supported: Inner Mongolia Autonomous Region Science and Technology Program(2023YFHH0036)
Natural Science Foundation of Inner Mongolia(2024LHMS05033)
Basic Scientific Research Fees for Colleges and Universities Directly under the Inner Mongolia(2023QNJS002, 2023YXXS007, 2024YXXS039)
National Natural Science Foundation of China(52161008)

作者简介 About authors

岑耀东,男,1982年生,博士

摘要

用扫描电镜(SEM)观察不同冷速的在线轧态、在线热处理态、实验室热处理态(冷速递增)珠光体重轨钢的珠光体片层,用疲劳试验机和应变仪测定重轨钢的拉-拉疲劳实验中长度不同的裂纹尖端应变场云图并基于Abaqus建立应力和应变模型,研究重轨钢的疲劳裂纹尖端的力学行为。结果表明:随着冷速的递增珠光体片层的间距递减,随着疲劳裂纹的扩展裂纹周围的应力场强和裂纹尖端的应力强度因子K增大,应力场呈显著的“蝴蝶状”,其中实验室热处理态重轨钢长度为1、2、3 mm处裂纹的应力强度因子K分别为13.53、14.58和15.54 MPa·m1/2,远比相同裂纹长度的在线轧态和在线热处理态重轨钢的大。随着疲劳裂纹长度的增大,裂纹尖端附近等效应变区域增大。三种冷速的重轨钢的裂纹长度相同时,随着珠光体片层间距的递减裂纹尖端等效应变值随之递减,裂纹长度为较长的3 mm时等效应变值模拟结果分别为0.074、0.067、0.055,而应变实验分别为0.082、0.064、0.058。模拟仿真结果与应变场实验结果最大误差为9.7%,验证了模型的可靠性。模拟和实验结果均表明,重轨钢珠光体片层间距越小则扩展过程中的疲劳裂纹其尖端的应力强度因子K越大,产生的等效应变越小,其抵抗断裂能力越强和疲劳性能越高。

关键词: 金属材料; 重轨钢; 组织; 疲劳断裂; 裂纹扩展; 应力应变

Abstract

The fatigue crack propagation of heavy rail steel has a very complex relationship with the stress and strain at the crack tip, but there is currently little research on this mechanism. This article takes pearlite heavy rail steel as the research object under three conditions (increasing cooling rate): online rolling state, online heat treatment state, and laboratory heat treatment state. The pearlite layers at different cooling rates were observed using scanning electron microscopy, and the tensile fatigue crack and stress field cloud map at the crack tip of the heavy rail steel were measured using fatigue testing machines and strain gauges. Then, a stress and strain model was established based on Abaqus, the results indicate that as the cooling rate increases, the interlayer spacing of pearlite decreases; With the fatigue crack propagation, the stress field strength around the crack and the Stress intensity factor k at the crack tip increase, and the stress field is more significant in the "butterfly" shape. The Stress intensity factor of the laboratory heat treated heavy rail steel at the crack length of 1, 2, 3 mm is 13.53, 14.58, and 15.54 MPa·m1/2, respectively, which is far greater than that of the rolled and heat treated heavy rail steel at the same crack length; As the fatigue crack length increases, the equivalent strain area near the crack tip increases. At the same crack length, the equivalent strain at the crack tip of three kinds of heavy rail steels with cooling rate decreases with the decrease of pearlite lamellae. The simulation results of equivalent strain at a longer crack length of 3 mm are 0.074, 0.067 and 0.055 respectively, while the strain experimental results are 0.082, 0.064 and 0.058 respectively. The maximum error between the simulation results and the strain field experimental results is 5.1%, which verifies the model. Both simulation and experimental results show that the smaller the pearlite lamella is, the larger the Stress intensity factor at the crack tip is during the fatigue crack growth process of heavy rail steel, the smaller the equivalent strain area is, the stronger the fracture resistance is, and the better the fatigue performance is.

Keywords: metallic materials; heavy rail steel; organization; fatigue fracture; crack propagation; stress-strain

PDF (14734KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720 DOI:10.11901/1005.3093.2023.431

CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. Chinese Journal of Materials Research, 2024, 38(9): 711-720 DOI:10.11901/1005.3093.2023.431

重轨钢在大载荷和交变应力条件下服役,疲劳失效是其常见的失效形式之一[1~5]。因此,疲劳失效一直是开发和设计重轨钢产品考虑的重点。相关研究人员基于线弹性或弹塑性力学理论,从疲劳裂纹受力的角度采用模拟方法研究了重轨钢的疲劳裂纹扩展[6~10]。Nejad等[11]用有限元法研究了周期性过载对铁路用900A级珠光体钢轨疲劳裂纹扩展的应力场,发现珠光体钢轨的疲劳裂纹扩展对周期性过载高度敏感。Fang等[12]建立了包含钢轨初始裂纹的轮轨三维有限元模型,评估了初始裂纹角度、深度和尺寸对实际载荷下混合疲劳裂纹扩展行为的影响,认为45°是初始裂纹的最危险角度,导致初始裂纹深度增大和裂纹扩展速率提高。马晓川等[13]基于近场动力学理论建立了钢轨疲劳裂纹萌生的数值模拟预测模型,与经典连续介质力学模型有很好的一致性。Hasan等[14]研究了115RE和136RE钢轨在实际工况中服役的可靠性与弯曲疲劳应力之间的关系,提出了承受最大弯曲疲劳应力和疲劳试验载荷的建议值。Akama等[15]针对RP钢轨建立了非比例混合模式载荷下长共面I/II/III疲劳裂纹扩展模型,提出考虑裂纹表面接触的等效应力强度因子范围并成功回归了二次裂纹的增长率数据。Gao等[16]根据疲劳裂纹扩展的应力强度因子分析了疲劳裂纹生成的原因,认为珠光体钢轨裂纹扩展是裂纹尖端反复锐化和钝化的过程,其本质是裂纹尖端的塑性变形累积。Bonniot等[17]进一步研究了R260珠光体钢轨II+III混合模式下的疲劳裂纹扩展门槛值,构建了适用于裂纹尖端剪切/拉伸驱动的疲劳损伤模型,用于疲劳裂纹扩展路径和扩展速率的预测。

但是,以上研究大多借助有限元法评定钢轨材料的疲劳裂纹和研究应力对钢轨疲劳裂纹扩展速率及路径的影响,或者采用近场动力学方法预测钢轨的疲劳裂纹萌生位置,虽然能较直观地观察裂纹尖端应力应变场但是缺少实验佐证。因此,只用模拟方法分析疲劳结构有一定的局限性。

这表明,关于重轨钢应力应变对其疲劳裂纹扩展影响的机理的研究和将实验与模拟相结合研究裂纹尖端应力应变场对疲劳裂纹扩展的影响尚须进一步深入。鉴于此,本文在文献[18~22]工作的基础上将实验与模拟分析相结合研究珠光体重轨钢裂纹尖端的应力应变,以确定疲劳裂纹形核因素并分析其疲劳失效过程。

1 实验方法

实验用珠光体重轨钢的化学成分列于表1。三种重轨钢的在线热处理工艺为:1#试样:轧后从900℃空冷到室温(简称在线轧态);2#试样:轧后从900℃空冷到750℃,然后风冷到室温(简称在线热处理态)。3#试样(实验室热处理态):对1#试样进一步进行实验室热处理。在电阻加热炉中将1#试样加热至900℃,保温15 min后取出用水雾喷冷到560℃,保温30 s后继续水雾喷冷至室温。

表1   珠光体重轨钢的化学成分

Table 1  Chemical composition of pearlite heavy rail steel (mass fraction, %)

CSiMnVCrRE (Ce and La ratio)
0.760.610.890.070.280.002

新窗口打开| 下载CSV


根据《43kg/m-75kg/m钢轨订货技术条件》(TB/T2344--2012)确定标准紧凑拉伸疲劳试样(CT)。在Sincotec高频疲劳试验机上进行疲劳裂纹扩展试验,设定最大、最小载荷分别为Fmax = 8 kN、Fmin = 4 kN,应力比R = 0.5。按照《金属材料疲劳试验疲劳裂纹扩展方法》(GB T 6398-2017)用显微目测法观测疲劳裂纹长度,并记录循环次数。在试样表面喷漆制作散斑,用SincoTec电磁共振高频疲劳实验机进行拉-拉疲劳实验,用XTDIC三维全场应变系统纪录和观测试样在裂纹长度为1、2、3 mm和加载力为8 kN时的裂纹尖端应变云图,以分析疲劳失效过程和机理。疲劳试验设备如图1所示。

图1

图1   CT疲劳试验设备

Fig.1   CT fatigue test (a) sampling location and actual specimen; (b) specimen size (mm); (c) fatigue loading process and strain measurement; (d) strain acquisition


将试样抛光并用4%的硝酸酒精腐蚀,用蔡司光学显微镜观察组织形貌,用GALA3 TESCAN场发射扫描电镜观察其珠光体片层,用Image J分析测量软件测量和统计晶粒尺寸和珠光体片层间距。

2 应力场和应变场的数值模拟

采用Franc3D和Abaqus联合仿真方式将Franc 3D导入Abaqus建立的有限元模型中,划分初始网格并设置模型的材料属性、载荷及边界条件等。材料的力学性能参数列于表2。CT试样模拟疲劳裂纹扩展包括两部分:一部分是在Abaqus软件中建立模型,另一部分是在Franc3D软件中进行裂纹扩展。技术路线在图2中给出。

表2   三种试样的弹性模量和泊松比

Table 2  Elastic modulus and poisson's ratio of samples

Samples1#2#3#
Elastic modulus/MPa196000210000230000
Poisson's ratio (ν)0.270.30.3

新窗口打开| 下载CSV


图2

图2   技术路线图

Fig.2   Technical roadmap


在Abaqus中建立3D模型可变型实体拉伸,图3给出了CT网格模型和受力图,模型的单元类型选为C3D8R(八节点六面体线形减缩积分),共有27130个C3D8R单元和30831个节点。在Abaqus中定义相关载荷和边界条件,上下加载孔中心分别与上下加载柱面定义耦合(Cou-pling)约束关系,下加载孔中心约束X-Y-Z方向的平移和转动。根据材料的单调屈服和极限应力评估应力-应变曲线:

σ=Rp0.2εεp0.2N

式中:RP0.2为屈服强度,N为应变硬化系数,可由以下表达式确定:

N=0.31-Rp0.2Rm

式中:Rm为抗拉强度,使用模拟软件处理测出的真实值,得到材料的应力-应变模型。在Franc3D中将初始裂纹引入模型并在模型试样中建立半椭圆型裂纹,设置初始裂纹尺寸为a = 5 mm,b = 2 mm,对CT试样疲劳裂纹扩展速率模型施加最大载荷为8 kN,最小载荷为4 kN,应力比R均为0.5,频率为45 Hz的正弦波载荷,模拟参数列于表3。裂纹开始扩展直到断裂,在模型表面区域疲劳裂纹尖端可观察到最高的网格密度,如图4所示。

图3

图3   CT网格模型和网格受力

Fig.3   Grid model diagram and grid stress diagram of CT specimen


表3   Franc3D模型参数

Table 3  Franc3D model parameters

Fatigue load spectrumLoad / kNStress ratio, RFrequency / HzLoad form
Load Ⅰ80.545Sine wave
Load Ⅱ40.545Sine wave

新窗口打开| 下载CSV


图4

图4   Franc3D图

Fig.4   Franc 3D diagram


3 热处理工艺对显微组织的影响

5~7分别给出了三种试样的光学显微组织、扫描电镜组织和珠光体片层图片。由图5可见,试样1#、2#和3#的组织均为珠光体,而且晶粒尺寸依次递减。归因于提高冷速使重轨钢的微观组织显著细化。表4列出了不同冷速重轨钢的珠光体片层。由图7表4可以看出,三种冷却速度的重轨钢其珠光体组织片层间距依次递减。与1#试样相比,2#试样和3#试样的片层间距分别减小了59%和67%。这表明,随着冷却速度的提高U76CrRE重轨钢的珠光体片层间距随之减小,3#试样冷速最高,使其珠光体片层最小。

图5

图5   三种试样的光学显微组织

Fig.5   OM metallographic structure of three samples (a) 1# sample; (b) 2# sample; (c) 3# sample


表4   三种试样的微观组织类型、片层大小、晶粒尺寸

Table 4  Microstructure type, lamellar size and grain size of samples

SamplesCooling processMicrostructureLayers spacing / nmGrain size / μm
1#Air coolingPearlite324.620.73
2#Wind CoolingPearlite133.913.38
3#560oC-30 sPearlite105.97.90

新窗口打开| 下载CSV


图6

图6   三种试样的扫描电镜显微组织

Fig.6   SEM microscopic structure of three samples (a) 1# sample; (b) 2 # sample; (c) 3# sample


图7

图7   三种试样的珠光体片层

Fig.7   Pearlite layers of three samples (a) 1# sample; (b) 2# sample; (c) 3# sample


4 重轨钢疲劳裂纹尖端的应力-应变场

4.1 仿真模拟结果的线弹性分析

4.1.1 仿真模拟的应力场

将Franc3D中得到的模型导入Abaqus得到每一个循环次数的应力云图。实验中施加的力为8 kN,为了保证实验方案与模拟方案具有一致性,在Abaqus软件中也施加8 kN的载荷。如图8所示,为了研究疲劳裂纹的扩展,选用三种试样的疲劳裂纹长度分别为1、2、3 mm时的应力云图。可以看出,静载的应力和应变在距裂纹尖端较近的位置明显比裂纹其它位置高。其原因是,在材料设置时,在静载模型中只添加了弹塑性,没有设置最大主应力断裂条件,因此应力值的计算结果较高。根据弹塑性理论,裂纹位置固定时裂纹尖端的应变随着应力强度因子的增大而增大。

图8

图8   1#、2#、3#试样的裂纹尖端应力云图

Fig.8   Stress nephogram of crack tip of 1#, 2#, 3 # specimen with different crack lengths (a, a1, a2) 1 mm; (b, b1, b2) 2 mm; (c, c1, c2) 3 mm


表5列出了裂纹尖端的应力强度因子统计结果。由表5图8可以看出,随着疲劳裂纹长度的增大同种试样裂纹尖端的应力强度因子K随之增大,疲劳裂纹周围的应力场强也随之增大,应力场的“蝴蝶状”越显著。在裂纹长度相同时,3#试样的应力强度因子K最大,1#试样的应力强度因子K最小。应力强度因子K可用来判断裂纹的失稳扩展状态,裂纹失稳扩展的临界条件为:KI= KIC,即脆性断裂准则,其中平面应变断裂韧度是材料具有的一种机械性能,表示材料抵抗脆性断裂的能力。本文研究的疲劳裂纹属于I型裂纹,因此采用裂纹尖端应力场为

表5   疲劳裂纹尖端最大应力强度因子K

Table 5  Maximum stress intensity factor K at fatigue crack tip (MPa·m1/2)

Crack lengths1 mm2 mm3 mm
1#10.0111.1413.53
2#10.5712.8014.58
3#11.2013.6515.54

新窗口打开| 下载CSV


σij=K12πrϕij(θ)
K=σπa

式中σij为应力张量,ϕij(θ)为关于θ的函数,K为应力强度因子。 式(4)表明,K值与裂纹长度a有关。同时,K值越大表明材料抵抗断裂能力越强,疲劳性能越好,从表5可见,3#试样的疲劳性能优于2#试样和1#试样。表6列出了三种试样在1、2、3 mm时对应的循环次数。从表6可见,三种试样的裂纹每增加1 mm所需的循环次数依次增多,也表明3#试样的疲劳性能优于2#试样和1#试样。

表6   三种试样的循环次数

Table 6  Cycle times of samples

Crack lengths1 mm2 mm3 mm
1#181123235634281811
2#233184362216451513
3#373151560202706745

新窗口打开| 下载CSV


4.1.2 仿真模拟应变场分析

图9给出了三种试样长度不同的裂纹尖端的应变云图,可以看出,随着裂纹长度的增加,同种试样裂纹尖端附近等效应变区域不断增加。图10给出了裂纹尖端的等效应变值的变化,对比三种试样裂纹尖端应变值可以发现,在裂纹长度相同时,三种试样的应变值递减,即1#试样的应变值最大,3#试样的应变值最小。结合表5可知,3#试样疲劳裂纹尖端的应力强度因子K较大,抵抗疲劳断裂的能力强,不易失稳,等效应变区域就较小,而且裂纹尖端应力应变的奇异性使裂纹尖端附近一部分材料屈服,在裂纹扩展前其端部出现一个小的塑性区,影响断裂的模式和含缺陷构件材料对裂纹扩展的抗力。因为此塑性区的尺寸较小,可以用线弹性断裂力学加以解释。

图9

图9   1#、2#、3#试样的裂纹尖端应变云图

Fig.9   Strain nephogram of crack tip of 1#, 2#, 3# specimen with different crack lengths (a, a1, a2) 1 mm; (b, b1, b2) 2 mm; (c, c1, c2) 3 mm


图10

图10   长度不同的裂纹尖端应变场的变化

Fig.10   Variation of strain field at crack tip with different crack lengths


4.2 应变场的实验结果

表7列出了实验所得的疲劳数据,可以看出,在裂纹长度相同时,三种冷速的重轨钢试样中1#试样所需的循环次数最少,3#试样所需的循环次数最多,说明1#试样的疲劳性能最差,而3#试样的疲劳性能最好。在疲劳裂纹扩展实验过程中,用应变仪检测疲劳裂纹尖端应变场,得到了不同循环载荷作用下裂纹尖端应变场。图11给出了应变场的实验结果。可以看出,裂纹尖端的应变最显著,等效应变值最大,且随着疲劳裂纹长度的增大裂纹尖端的等效应变值随之增大,特别是裂纹长度为3 mm时三种冷速的重轨钢等效应变都达到最大值。裂纹长度相同时3#试样的等效应变区域小于2#试样小于1#试样,因为1#试样裂纹尖端附近的应力场强度较大,等效应变区域也比较大。

表7   三种试样的循环次数

Table 7  Cycle times of samples

Crack lengths1 mm2 mm3 mm
1#8 × 10413 × 10415 × 104
2#12 × 10420 × 10422 × 104
3#40 × 10450 × 10453 × 104

新窗口打开| 下载CSV


图11

图11   1#、2#、3#试样的裂纹尖端应变云图

Fig.11   Strain nephogram of crack tip of 1#, 2#, 3# specimen with different crack lengths (a, a1, a2) 1 mm; (b, b1, b2) 2 mm; (c, c1, c2) 3 mm


图12为裂纹尖端等效应变实验结果,可以看出,三种试样的裂纹长度相同时,3#试样裂纹尖端的等效应变值最小,1#试样裂纹尖端的等效应变值最大,其原因是,3#试样的晶粒尺寸小、片层间距小,且裂纹尖端的应力强度因子大,抵抗断裂的能力强,裂纹不易扩展。这也证明了,3#试样的疲劳性能最好而1#试样的疲劳性能最差。表8列出了模拟仿真结果等效应变与应变仪测量结果。可以看出,用两种方法得到的等效应变值都随着疲劳裂纹长度的增大而增大,且3#试样的最大等效应变值小于2#试样小于1#试样。随着冷速的递增裂纹长度相同时三种重轨钢裂纹尖端的等效应变值递减,其中裂纹长度为较长的3 mm时等效应变值模拟结果分别为0.074、0.067、0.055,而应变实验结果分别为0.082、0.064、0.058。这表明,模拟仿真结果与应变场实验结果最大误差为9.7%,两者有较好的一致性。

图12

图12   裂纹尖端等效应变

Fig.12   Equivalent strain at crack tip


表8   最大等效应变

Table 8  Maximum equivalent strain results

Crack length1 mm2 mm3 mm
Method and error rateSimulationStrain testError rateSimulationStrain testError rateSimulationStrain testError rate
1#0.0490.0513.9%0.0690.06113.1%0.0740.0829.7%
2#0.0420.03616.7%0.0600.05020%0.0670.0644.7%
3#0.0210.02100.0350.04928.6%0.0550.0585.1%

新窗口打开| 下载CSV


5 结论

(1) 随着冷速的递增在线轧态、在线热处理态、实验室热处理态重轨钢的珠光体片层间距递减;随着疲劳裂纹扩展其周围的应力场强和裂纹尖端的应力强度因子K增大,轧态的K最小,实验室热处理态的最大;随裂纹长度的增大同种试样裂纹尖端的应力强度因子值随之增大,应力场呈更加显著的“蝴蝶状”;在裂纹长度相同的条件下实验室热处理态重轨钢的应力强度因子K最大,表明细化珠光体片层有利于提高重轨钢的疲劳性能。

(2) 随着裂纹长度的增加,在线轧态、在线热处理态、实验室热处理态珠光体重轨钢裂纹尖端附近的等效应变区域不断增加。

(3) 随着冷速的递增,裂纹长度相同的三种重轨钢裂纹尖端等效应变值递减,可归因于实验室热处理态重轨钢的晶粒尺寸小、片层间距小,且裂纹尖端的应力强度因子大,抵抗断裂能力强,不易进行裂纹扩展,裂纹尖端的应变区域小,等效应变区域小同时也表明其疲劳性能好。模拟结果与测试结果的一致性较好,表明该模型的可靠性很高。

参考文献

Jia X Y, Li G Q, Liu X B, et al.

Factors influencing fatigue crack initiation of rail for heavy haul railway

[J]. China Railw. Sci., 2020, 41(4): 40

[本文引用: 1]

贾昕昱, 黎国清, 刘秀波 .

重载铁路钢轨疲劳裂纹萌生影响因素

[J]. 中国铁道科学, 2020, 41(4): 40

[本文引用: 1]

Zhao X, Wen Z F, Wang H Y, et al.

Research progress on wheel/rail rolling contact fatigue of rail transit in China

[J]. J. Traffic Transp. Eng., 2021, 21(1): 1

赵 鑫, 温泽峰, 王衡禹 .

中国轨道交通轮轨滚动接触疲劳研究进展

[J]. 交通运输工程学报, 2021, 21(1): 1

Wang J P, Zhou Y, Shen G.

Effect of rail hardness on fatigue cracks initiation and rail wear

[J]. J. Southwest Jiaotong Univ., 2021, 56(3): 611

王军平, 周 宇, 沈 钢.

钢轨硬度对疲劳裂纹萌生和钢轨磨耗的影响

[J]. 西南交通大学学报, 2021, 56(3): 611

Zuo Y, Zhou S T, Li Z D.

Effect of V and Si on microstructure and mechanical properties of medium-carbon pearlitic steels for wheel

[J]. Chin. J. Mater. Res., 2016, 30(6): 401

DOI     

The effect of V and Si on the microstructure and mechanical properties of medium-carbon pearlitic steels for wheel was studied by means of OM、SEM and TEM, as well as tensile and impact tests. The results showed that the austenite grain size, the pearlite colony size and interlamellar spacing were significantly refined by increasing V content, which also led to an increase in the volume fraction of proeutectoid ferrite of the steels. With the increasing of V content, the yield strength at room temperature and the impact toughness at -20℃were enhanced due to precipitation strengthening and grain refinement effects of VC. However, the tensile strength at room temperature was decreased due to the increasing of the soft phase, i.e., proeutectoid ferrite. The increase of Si content resulted in the great decrease of proeutectoid ferrite and the significant refinement of pearlite interlamellar spacing but the slight refinement of austenite grain size. Si addition also promoted the VC precipitation but had only a little influence. The yield- and tensile-strength were enhanced mainly by the effect of solid solution strengthening and the refinement of pearlite interlamellar spacing due to Si addition. The balance of strength and toughness in medium-carbon pearlite steels could be effectively optimized by microalloying with the combination of medium 0.07%-0.08%V(mass fraction) and relatively high 0.8%-0.9%Si (mass fraction).

左 越, 周世同, 李昭东 .

V和Si对珠光体车轮钢显微组织和力学性能的影响规律

[J]. 材料研究学报, 2016, 30(6): 401

Liu J P, Zhang Y H, Tian C H, et al.

Formation mechanism and maintenance strategy of rail squat in Chinese high-speed railway

[J]. China Railw. Sci., 2022, 43(2): 40

[本文引用: 1]

刘佳朋, 张银花, 田常海 .

我国高速铁路钢轨隐伤形成机理及维护策略

[J]. 中国铁道科学, 2022, 43(2): 40

[本文引用: 1]

Zhang Z F, Liu R, Zhang Z J, et al.

Exploration on the unified model for fatigue properties prediction of metallic materials

[J]. Acta Metall. Sin., 2018, 54(11): 1693

DOI      [本文引用: 1]

The fatigue of metallic materials can be divided into high-cycle fatigue (HCF) and low-cycle fatigue (LCF); the damage of these two types of fatigue is commonly evaluated through stress amplitude and strain amplitude of cyclic loading, respectively. The mismatch of the evaluation standards between HCF and LCF leads to difficulties in the design and selection of anti-fatigue materials. Under this condition, systematic researches on fatigue properties and microscopic damage mechanisms of HCF, LCF and extra-low-cycle fatigue (ELCF) for pure Cu and Cu-Al alloys were summarized in this work. On the bases of the experimental results, a three-dimensional fatigue model is proposed, which is simultaneously applicable to both the HCF and LCF properties. The model is built up in a three-dimensional coordinate system of stress amplitude-strain amplitude-fatigue life; it could be associated with the cyclic stress-strain (CSS) curve, S-N curve and E-N curve through the projection method, or be transformed into the Basquin equation, Coffin-Manson equation and hysteretic energy model under specific conditions. In this way, this generally applicable fatigue model helps provide a new viewpoint for the evaluation and optimization of fatigue properties based on the classical fatigue theories.

张哲峰, 刘 睿, 张振军 .

金属材料疲劳性能预测统一模型探索

[J]. 金属学报, 2018, 54(11): 1693

DOI      [本文引用: 1]

金属材料的疲劳可分为高周疲劳与低周疲劳,通常分别以应力幅与应变幅作为损伤参量;疲劳性能评价标准在高周与低周疲劳交界处的断层导致抗疲劳材料设计与选择的困难。本文通过对纯Cu及Cu-Al系列合金高周、低周(含超低周)疲劳性能与微观损伤机制的系统研究,提出了统一高周与低周性能的三维疲劳性能预测模型,并由其关键参数进一步提出了基于能量的疲劳性能统一评价标准。该模型建立在应力幅-应变幅-疲劳寿命三维坐标系下,可通过投影的方式获得循环应力-应变(CSS)曲线、应力-寿命(S-N)曲线与应变-寿命(E-N)曲线,模型函数在特定条件下也可转化为Basquin公式、Coffin-Manson公式与滞回能模型形式,从而在经典理论基础上为疲劳性能评价与优化问题提供了新的视角。

Rodríguez-Arana B, San Emeterio A, Alvarado U, et al.

Prediction of rolling contact fatigue behavior in rails using crack initiation and growth models along with multibody simulations

[J]. Appl. Sci., 2021, 11(3): 1026

Guo Z J, Yin H.

Fatigue crack detection of heavy duty railway track based on decision fusion analysis

[J]. Int. J. Mater. Prod. Technol., 2022, 65(1): 14

Cheng Z N, Zhou Y, Li J P, et al.

Crack propagation and rail surface spalling mechanism based on peridynamics

[J]. J. Tongji Univ. (Nat. Sci.), 2023, 51(6): 912

程中宁, 周 宇, 李骏鹏 .

基于近场动力学的裂纹扩展及轨面剥离掉块成因机理

[J]. 同济大学学报(自然科学版), 2023, 51(6): 912

Shen M X, Rong B, Qin T, et al.

Study on wear behavior and debris particles emission characteristics induced by wheel-rail rolling contact under frequent start-stop conditions

[J]. J. Mech. Eng., 2022, 58(3): 194

DOI      [本文引用: 1]

Rail transit vehicles are subject to frequent stops and starts near stations, the contact stress distribution between the wheel-rail interfaces become more complex during the process of acceleration and deceleration, which leads to unusual wheel-rail wear and debris behavior. An innovative wheel-rail rolling contact fatigue and wear test rig JD-DRCF/M is developed to carry out the cyclic acceleration and deceleration wear test for the wheel-rail rolling contact tribo-pairs and real-time monitoring of particle emission under frequent start-stop conditions, to understand the wear behavior and particle emission characteristics of the wheel-rail rolling contact interface near the station. The results showed that, the adhesion coefficient between wheel and rail is significantly affected by the acceleration <i>α</i><sub>r</sub>. With the increase of the acceleration <i>α</i><sub>r</sub>, the adhesion coefficient after the completion of the acceleration stage showed a trend of gradually decreased and then gradually rose. Moderate acceleration (<i>e.g.</i>, <i>α</i><sub>r</sub>=800 r&#183;min<sup>-2</sup>) reduces the adhesion between wheel and rail interface, and mitigates the wear loss of wheel and rail effectively. The emission of inhalable particles (e.g<i>.</i>, 3.0 μm ≤ <i>d</i> ≤ 10.0 μm) is significantly increased under the start-stop condition (<i>i.e.</i>, the condition of acceleration). In especial, this phenomenon was more serious under the low acceleration condition (<i>e.g.</i>, <i>α</i><sub>r</sub>=400 r&#183;min<sup>-2</sup>).

沈明学, 容 彬, 秦 涛 .

频繁启停工况下轮轨滚动接触磨损行为与磨屑颗粒排放特性研究

[J]. 机械工程学报, 2022, 58(3): 194

DOI      [本文引用: 1]

轨道交通车辆在近站点附近须频繁启停,在加减速过程中轮轨界面接触应力分布变得更为复杂,从而引起轮轨磨耗和磨屑行为的改变。为深入了解近站点附近频繁启停工况下轮轨滚动接触界面的磨损特性与颗粒物排放行为,利用自行研制的JD-DRCF/M型轮轨滚动接触疲劳/磨损试验台开展了频繁启停工况下轮轨循环加减速磨损试验与颗粒物排放实时监测。结果表明,轮轨间黏着系数受加速度α<sub>r</sub>的影响显著;随着加速度α<sub>r</sub>的提高,加速阶段完成后的黏着系数依次呈现先下降后上升的趋势;适中的加速度(如α<sub>r</sub>=800 r&#183;min<sup>-2</sup>)降低了轮轨间黏着,同时有效减缓了轮轨磨耗;启停工况(即有加速度时)大大提高了可吸入颗粒物(如3.0 ≤ d ≤ 10.0 μm)的排放浓度,尤其在较低的加速度(如400 r&#183;min<sup>-2</sup>)工况下这种现象更为严重。

Nejad R M, Shariati M, Farhangdoost K.

Prediction of fatigue crack propagation and fractography of rail steel

[J]. Theor. Appl. Fract. Mech., 2019, 101: 320

[本文引用: 1]

Fang X Y, Zhang H N, Ma D W.

Influence of initial crack on fatigue crack propagation with mixed mode in U71Mn rail subsurface

[J]. Eng. Failure Anal., 2022, 136: 106220

[本文引用: 1]

Ma X C, Liu L Y, Zhang P F, et al.

Numerical method for predicting rail fatigue crack initiation with peridynamic theory

[J]. Tribology, 2020, 40(5): 608

[本文引用: 1]

马晓川, 刘林芽, 张鹏飞 .

近场动力学框架下钢轨疲劳裂纹萌生预测的数值方法研究

[J]. 摩擦学学报, 2020, 40(5): 608

[本文引用: 1]

Speed Hasan N., test fatigue, and P 2 load limit

: fatigue strength of railroad rail

[J]. J. Transp. Eng., 2020, 146A(1) : 061901

[本文引用: 1]

Akama M, Kiuchi A.

Fatigue crack growth under non-proportional mixed mode I/III loading in rail and wheel steel

[J]. Tetsu-to-Hagané, 2019, 104(11): 689

[本文引用: 1]

Gao R P, Liu M M, Wang B, et al.

Influence of stress intensity factor on rail fatigue crack propagation by finite element method

[J]. Materials, 2021, 14(19): 5720

[本文引用: 1]

Bonniot T, Doquet V, Mai S H.

Mixed mode II and III fatigue crack growth in a rail steel

[J]. Int. J. Fatigue, 2018, 115: 42

[本文引用: 1]

Cen Y D, Chen L, Ji C J, et al.

Fatigue crack growth behavior of eutectoid steel rail

[J]. J. Wuhan Univ. Technol.-Mat. Sci., 2022, 37(3): 507

[本文引用: 1]

Cen Y D, Chen L, Dong R, et al.

Effect of quenching rate on fatigue crack growth of hypereutectoid rail steel

[J]. J. Mater. Sci., 2020, 55(30): 15033

Cen Y D, Chen L, Dong R, et al.

Effect of self-tempering on fatigue crack growth of heavy rail steel

[J]. Mater. Rep., 2021, 35(12): 12136

岑耀东, 陈 林, 董 瑞 .

自回火对重轨钢疲劳裂纹扩展行为的影响

[J]. 材料导报, 2021, 35(12): 12136

Cen Y D, Guo Y H, Ma X, et al.

Bending fatigue crack propagation behavior of U75V heavy rail steel

[J]. J. Mater. Eng., 2023, 51(1): 122

DOI     

In order to clarify the fatigue crack propagation behavior of pearlitic rail, the three-point bending fatigue crack propagation rate of U75V heavy rail steel in rolling state and heat treatment state was measured. The microstructure, lamella, fracture morphology and fatigue crack propagation trajectory of rail were observed by optical microscope, scanning electron microscope and EBSD. The results show that the average distance between fatigue striation of rolled and heat-treated rails is 252.5 nm and 215.4 nm, the fracture surface of rolled rail presents cleavage steps and river patterns, and the river patterns tend to merge.However, the fatigue fracture surface of the heat-treated rail presents a large number of cleavage steps, more microcracks and tear edges, and the river pattern is dominated by tributaries.The fatigue crack growth rate of heat-treated rail is much lower than that of rolled sample, and it is also slow to reach the stage of crack instability.The fatigue crack propagation mode of rolled and heat-treated rail is the mixed propagation mode of transgranular fracture and intergranular fracture dominated by transgranular fracture, the pearlite lamellae spacing of rolled and heat-treated rails is 272.2 nm and 148.4 nm respectively. The pearlite lamellae of heat-treated rails is fine and has various directions, while there are significant pearlite clusters in the heat-treated rail.There are many branch cracks and crack bridges in the crack growth path, which hinders the crack propagation in the heat-treated U75V heavy rail steel, which is an important reason why the fatigue crack propagation rate of the heat-treated rail is lower than that of the rolled rail.

岑耀东, 郭曜珲, 马 潇 .

U75V+重轨钢弯曲疲劳裂纹扩展行为

[J]. 材料工程, 2023, 51(1): 122

DOI     

为明确珠光体钢轨的疲劳裂纹扩展行为,测定U75V重轨钢轧态和热处理态两种条件下的三点弯曲疲劳裂纹扩展速率,采用光学显微镜、扫描电镜、EBSD对钢轨的微观组织、片层、断口形貌及裂纹扩展轨迹进行观察。结果表明:轧态和热处理态钢轨的疲劳辉纹平均间距分别为253,215 nm,轧态钢轨的疲劳断口呈现解理台阶与河流花样形貌,且河流花样趋于合并,而热处理态钢轨的疲劳断口呈现大量的解理台阶及较多的微裂纹和撕裂棱,河流花样以支流为主;热处理态钢轨的疲劳裂纹扩展速率远低于轧态,到达裂纹失稳阶段也较滞后;轧态和热处理态钢轨的疲劳裂纹扩展都是以穿晶断裂为主的穿晶断裂和沿晶断裂混合扩展方式进行,轧态和热处理态钢轨的珠光体片层间距分别为272,148 nm,其中热处理态钢轨的珠光体片层细密且方向多样,存在显著的珠光体团簇,裂纹扩展轨迹中出现较多的分支裂纹和裂纹桥接现象,对扩展起到阻碍作用,是热处理态钢轨抗疲劳裂纹扩展能力优于轧态的重要原因。

Chen L, Dai Y H, Cui J W, et al.

Optimization of quenching process and fatigue crack growth behavior of microalloyed rail

[J]. J. Mech. Eng., 2022, 58(14): 233

DOI      [本文引用: 1]

In order to quantitative analysis of the correlation between microalloying with quenching process and crack growth, to find a way to correct the phenomenon of self-tempering during rail quenching, through the fatigue crack growth test of GGX-G heavy rail steel and self-developed and designed microalloyed element heavy rail experimental steel after quenching and cooling rate of 8℃/s and quenching and cooling rate of 8℃/s and self -tempering, the results show that under the condition of no heat treatment, the fatigue life of the experimental steel is better than that of GGX-G steel for 0.11 million times; after 8℃/s cold speed and 8℃/s cold speed self-tempering process, it has been increased from 0.77 million times to 1.07 million times, and self-tempering does not affect the fatigue life of the steel, and still has good fatigue performance; after quenching, there is a slow propagation zone in zone II of the experimental steel, and the △<i>K</i> range of the experimental steel is higher after self-tempering, the microalloyed rail has excellent resistance to the reduction of fatigue properties caused by self-tempering; the experimental steels after quenching process all meet the requirements of national standard, and the fatigue fracture surface of 8℃/s quenching cooling rate is similar to that of 8℃/s quenching cooling rate, which also indicates that self-tempering has little effect on fatigue properties of experimental steels, it has strong self-tempering resistance. The addition of microalloyed elements not only improves the fatigue performance of quenched rail, but also corrects the effect of self-tempering on rail performance.

陈 林, 戴宇恒, 崔健伟 .

微合金化钢轨淬火工艺的优化及其疲劳裂纹扩展行为研究

[J]. 机械工程学报, 2022, 58(14): 233

[本文引用: 1]

/