Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (9): 701-710    DOI: 10.11901/1005.3093.2023.417
  研究论文 本期目录 | 过刊浏览 |
Al-Mg-Si合金中的富铁相对其力学性能的影响
汪小锋1,2,3(), 谭蔚1, 冯光明2, 刘吉波4, 刘先斌4, 鲁涵4
1 天津大学化工学院 天津 300350
2 宁波力劲科技有限公司 宁波 315800
3 宁波大学冲击与安全工程教育部重点实验室 宁波 315211
4 宁波展慈新材料科技有限公司 宁波 315338
Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy
WANG Xiaofeng1,2,3(), TAN Wei1, FENG Guangming2, LIU Jibo4, LIU Xianbin4, LU Han4
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2 Ningbo LK Technology Co. Ltd., Ningbo 315800, China
3 Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
4 Ningbo Zhanci New Material Co. Ltd., Ningbo 315338, China
引用本文:

汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
Xiaofeng WANG, Wei TAN, Guangming FENG, Jibo LIU, Xianbin LIU, Han LU. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. Chinese Journal of Materials Research, 2024, 38(9): 701-710.

全文: PDF(22646 KB)   HTML
摘要: 

制备了两种低富铁相含量不同的Al-Mg-Si合金并表征其显微组织、织构和进行拉伸实验,研究了富铁相对其组织、织构和力学性能的影响。结果表明:加工使合金中富铁相的形态和尺寸发生变化,尤其是中间退火使部分粗大的富铁相转变为纳米尺度;虽然富铁相对加工过程中中间状态的组织影响较小,但是最终大幅细化成再结晶晶粒组织;富铁相通过再结晶机制影响再结晶织构组分和体积分数;富铁相有利于大幅提高这种合金的屈服强度、抗拉强度及塑性应变比r值,降低应变硬化指数n值及各向异性系数Δr值且保证其延伸率不变。力学性能的提高,可归因于合金的细晶组织和弱织构。这表明,在Al-Mg-Si合金中引入适量的富铁相有利于提高其力学性能。

关键词 金属材料富铁相Al-Mg-Si合金组织织构    
Abstract

Two Al-Mg-Si alloys with different Fe-rich phase contents within a range of low Fe-rich phase content were designed, and the effect of Fe-rich phase on microstructure, texture and mechanical properties of the alloys were studied through microstructure characterization, texture measurement and tensile test. The results show that the shape and size of the Fe-rich phase may undergo continuous changes during thermomechanical processing, especially for the intermediate annealing state, and some coarse particles of Fe-rich phase could become nano-sized; although the introduction of the Fe-rich phase affects the microstructure of the intermediate states slightly during thermomechanical processing, it may be beneficial to efficiently refine the final recrystallization grain structure; Fe-rich phase can affect recrystallization texture and volume fractions, and thus the final weak recrystallization texture may be developed; Fe-rich phase is beneficial to improve yield strength, ultimate tensile strength and plastic strain ratio r, reduce strain hardening exponent n and planar anisotropy coefficient, and keep elongation unchanged. The improvement of properties can be attributed to the fine microstructure and weak texture.

Key wordsmetallic materials    Fe-rich phase    Al-Mg-Si alloy    microstructure    texture
收稿日期: 2023-08-25     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(52005271);宁波市科技创新2025 重大专项项目(2021Z099, 2023Z005)
通讯作者: 汪小锋,wangxiaofeng@nbu.edu.cn,研究方向为高性能铝合金设计开发
Corresponding author: WANG Xiaofeng, Tel: 17858883615, E-mail: wangxiaofeng@nbu.edu.cn
作者简介: 汪小锋,男,1985年生,博士
AlloyMgSiCuMnFeAl
ANominal0.80.90.20.10Bal.
Analyzed0.830.920.220.120.03Bal.
BNominal0.81.00.20.150.2Bal.
Analyzed0.821.080.210.160.24Bal.
表1  Al-Mg-Si合金的化学成分
图1  拉伸试样的尺寸示意图
图2  Al-Mg-Si合金的铸态组织
图3  Al-Mg-Si合金均匀化态的组织
图4  Al-Mg-Si合金板材的热轧组织
图5  中间退火态Al-Mg-Si合金板材的组织
图6  中间退火态Al-Mg-Si合金板材中第二相粒子的分布
图7  冷轧态Al-Mg-Si合金板材的组织
图8  T4P态Al-Mg-Si合金板材的EBSD分析
图9  T4P态Al-Mg-Si合金板材的织构
Alloy sheetComponentIntensityVolume fraction / %
ACubeND4.114.1
P2.06.9
Goss3.66.2
BCube3.511.1
Goss2.63.7
表2  合金板材A和B的再结晶织构组分的体积分数
AlloyDirection / (°)rAverage r (r¯)ΔrnAverage nElongation / %Yield strength / MPaUltimate tensile strength / MPa
A00.7250.590.1940.3120.31526.3113237
450.4930.31225.3105224
900.6490.32324.9105223
B00.7000.630.1020.2980.29925.7133269
450.5790.29827.0124255
900.6610.30226.0125253
表3  T4P态合金板材的力学性能
1 Zheng Y Y, Luo B H, Bai Z H. Evolution of microstructure and precipitates of Al-Mg-Si alloy during early aging process [J]. Chin. J. Mater. Res., 2022, 36(12): 926
doi: 10.11901/1005.3093.2021.403
1 郑亚亚, 罗兵辉, 柏振海. 时效早期Al-Mg-Si合金的组织和析出相的演变 [J]. 材料研究学报, 2022, 36(12): 926
doi: 10.11901/1005.3093.2021.403
2 Zhang R F, Xu J, Feng X M, et al. Effect of the aging process on the yield ratio of 6013 aluminum alloy extruded profile [J]. Chin. J. Eng., 2023, 45(4): 569
2 张瑞芳, 许 吉, 冯鑫明 等. 时效制度对6013铝合金挤压型材屈强比的影响 [J]. 工程科学学报, 2023, 45(4): 569
3 Yuan Z Y, Lu C, Ding L P, et al. The interactive effect of alloy composition and pre-straining on the precipitation behavior of Al-Mg-Si-Cu alloys [J]. Mater. Sci. Eng., 2022, 849A: 143495
4 Arnoldt A, Semmelrock L, Soukup D, et al. Analysis of second phase particles in metals using deep learning: segmentation of nanoscale dispersoids in 6xxx series aluminum alloys (Al-Mg-Si) [J]. Mater. Charact., 2022, 191: 112138
5 Sidor J, Petrov R H, Kestens L A I. Deformation, recrystallization and plastic anisotropy of asymmetrically rolled aluminum sheets [J]. Mater. Sci. Eng., 2010, 528A: 413
6 Wang X F, Liu H, Tang X B, et al. Influence of asymmetric rolling on the microstructure, texture evolution and mechanical properties of Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2022, 844A: 143154
7 Sidor J, Miroux A, Petrov R, et al. Microstructural and crystallographic aspects of conventional and asymmetric rolling processes [J]. Acta Mater., 2008, 56: 2495
8 Gong W Y, Xie M J, Wu Y, et al. Synergistic strengthening by β″ and η′ phases in Al-Mg-Si-Cu-Zn alloys [J]. Mater. Lett., 2022, 308: 131213
9 Chen J H, Cheng X X, Ding L P, et al. Effect of multi-stage aging on the precipitation strengthening and mechanical properties for an Al-Mg-Si-Ag alloy [J]. Mater. Charact., 2022, 190: 112004
10 Jiang S Y, Wang R H. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35: 1354
doi: 10.1016/j.jmst.2019.03.011
11 Zhu S, Li Z H, Yan L Z, et al. Effects of Zn addition on the age hardening behavior and precipitation evolution of an Al-Mg-Si-Cu alloy [J]. Mater. Charact., 2018, 145: 258
12 Liu C H, Zhang X M, Tang J G, et al. Effect of copper on precipitation and baking hardening behavior of Al-Mg-Si alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2289
13 Wang X F, Guo M X, Chapuis A, et al. The dependence of final microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheets on the intermediate annealing [J]. Mater. Sci. Eng., 2015, 633A: 46
14 Wang X F, Guo M X, Cao L Y, et al. Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al-Mg-Si alloys [J]. Int. J. Miner. Metall. Mater., 2015, 22: 738
15 Wang X F, Guo M X, Peng W F, et al. Relationship among solution heating rate, mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloy [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 36
16 Trink B, Weißensteiner I, Uggowitzer P J, et al. High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical properties [J]. Scr. Mater., 2022, 215: 114701
17 Yu L B, Chen L, Wang H B, et al. Influence of Fe-rich particles on microstructure evolution, texture and mechanical properties of Al-Mg-Si-Cu alloys [J]. Metall. Res. Technol., 2020, 117: 508
18 Kuijpers N C W, Vermolen F J, Vuik C, et al. The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al-Mg-Si alloys on the alloying elements [J]. Mater. Sci. Eng., 2005, 394A: 9
19 He L Z, Chen Y B, Cui J Z. Effect of homogenization on the microstructures and properties of Al-Mg-Si-Cu alloy [J]. Rare Met. Mater. Eng., 2008, 37(9): 1637
19 何立子, 陈彦博, 崔建忠. 均匀化对Al-Mg-Si-Cu合金组织和性能的影响 [J]. 稀有金属材料与工程, 2008, 37(9): 1637
20 Engler O. Nucleation and growth during recrystallisation of aluminium alloys investigated by local texture analysis [J]. Mater. Sci. Technol., 1996, 12(10): 859
21 Engler O. On the influence of orientation pinning on growth selection of recrystallisation [J]. Acta Mater., 1998, 46(5): 1555
22 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd ed. Oxford: Pergamon, 2004: 230
23 Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy [J]. Scr. Mater., 2010, 62(2): 78
24 Wang X F, Shi T Y, Jiang Z X, et al. Relationship among grain size, texture and mechanical properties of aluminums with different particle distributions [J]. Mater. Sci. Eng., 2019, 753A: 122
25 Morawiec A. On abnormal growth of Goss grains in grain-oriented silicon steel [J]. Scr. Mater., 2011, 64(5): 466
26 Leu D K. Prediction of the limiting drawing ratio and the maximum drawing load in cup-drawing [J]. Int. J. Mach. Tools Manuf., 1997, 37(2): 201
[1] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[4] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[5] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[6] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[8] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[9] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[10] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[11] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[12] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[13] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[14] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[15] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.