Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (9): 669-679    DOI: 10.11901/1005.3093.2023.514
  研究论文 本期目录 | 过刊浏览 |
GH4099合金粉末的热等静压成形和薄壁筒体的制造
尹一峰1,2, 卢正冠1, 徐磊1, 吴杰1()
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders
YIN Yifeng1,2, LU Zhengguan1, XU Lei1, WU Jie1()
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110116, China
引用本文:

尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
Yifeng YIN, Zhengguan LU, Lei XU, Jie WU. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. Chinese Journal of Materials Research, 2024, 38(9): 669-679.

全文: PDF(16917 KB)   HTML
摘要: 

分别采用等离子旋转电极雾化法(PREP)和无坩埚感应熔炼超声气体雾化法(EIGA)制备出GH4099洁净预合金粉末,再将其热等静压(HIP)制备GH4099合金,研究了热等静压温度对其显微组织和拉伸性能的影响。采用优选的热等静压制度1230℃/150 MPa/4 h进行有限元模拟辅助包套设计,用PREP粉末制造出GH4099薄壁筒体。结果表明,与EIGA法相比,用PREP法制备的GH4099粉末球形度更好、表面氧化层更薄,更适合进行热等静压成形。在1165℃~1230℃随着热等静压温度的提高GH4099合金的孔隙和原始颗粒边界数量显著减少,使其在900℃的拉伸性能提高。用PREP粉末制造的GH4099薄壁筒体,其关键尺寸与实际薄壁筒体的相对偏差小于5%。

关键词 金属材料GH4099合金粉末冶金热等静压近净成形    
Abstract

Two pre-powders of GH4099 alloy were prepared via techniques of plasma rotating electrode process (PREP) and electrode induction melting gas atomization (EIGA) respectively. Then, the powders were subjected to hot isostatic pressing (HIP) to prepare bulk GH4099 alloy (PM GH4099 alloy), and the effect of HIP temperature on the microstructure and tensile properties of PM GH4099 alloy was investigated. The results show that in comparison with EIGA process, the GH4099 powder prepared by PREP process has better powder sphericity with thinner surface oxide scale, which is more suitable for hot isostatic pressing preparation of workpiece of PM GH4099 alloys. With the increasing HIP temperature within the range of 1165oC~1230oC, the porosity and prior particle boundaries (PPBs) of the acquired PM GH4099 alloy decreases significantly, therewith, the corresponding tensile properties at 900oC were improved. Finally, with the help of finite element modeling (FEM) to assist the envelope design and make, and finally thin-walled cylinders of PM GH4099 were successfully fabricated with the PREP powder via HIP at 1230oC/150 MPa/4 h. The FEM predicted dimensional shrinkages are consistent with that of the actual made thin-walled cylinders of PM GH4099, and the deviation between the corresponding key dimensions is less than 5%.

Key wordsmetallic materials    GH4099 alloy    powder metallurgy    hot isostatic pressing    near-net shape manufacturing
收稿日期: 2023-10-19     
ZTFLH:  TG132.32  
基金资助:中国科学院基础研究领域青年团队计划(YSBR-025);国家科技重大专项(J2019-VⅡ-0005-0145)
通讯作者: 吴 杰,副研究员,jwu10s@imr.ac.cn,研究方向为粉末高温结构材料近净成形技术
Corresponding author: WU Jie, Tel: (024)83978843, E-mail: jwu10s@imr.ac.cn
作者简介: 尹一峰,男,2000年生,博士生
卢正冠,男,1990年生,博士
AlTiCrCoMoWHNONi
Master Alloy2.071.2818.466.344.136.180.000120.00090.0006Bal.
PREP2.221.2718.646.763.855.710.000220.00140.0039Bal.
EIGA2.161.2918.676.953.915.950.000240.00150.0049Bal.
表1  GH4099预合金粉末的主要化学成分
图1  GH4099预合金粉末的形貌
图2  GH4099预合金粉末的粒度分布
图3  GH4099预合金粉末的XPS谱
图4  GH4099预合金粉末的升温DSC曲线
Preparation processTemperaturePressureHolding timeCooling type
HIP11165oC150 MPa4 hFurnace cooling
HIP21200oC150 MPa4 hFurnace cooling
HIP31230oC150 MPa4 hFurnace cooling
表2  GH4099合金粉末的热等静压制度
图5  GH4099合金的SEM照片
图6  在HIP3条件下GH4099合金中PPBS处碳化物颗粒的TEM形貌
图7  GH4099合金内部显微孔隙的大小和分布
图8  GH4099合金在不同温度下的拉伸性能
图9  不同热等静压温度下的GH4099合金900℃拉伸断口
图10  有限元模拟薄壁筒体收缩前后尺寸的对比
图11  薄壁筒体实物模型图和薄壁筒体截面模拟与实测值的相对位置关系
PositionActual size / mmSimulated size / mmDeviation / mmRelative error / %
01450.51465.4814.973.2
02479.49497.5218.033.6
03443.90462.5618.664.0
04476.77496.8820.114.0
05447.58455.087.501.6
06480.32521.0340.717.8
表3  薄壁筒体特定位置尺寸的实测值与模拟值的对比
1 Zhang H B. Hot deformation behavior and microstructure evolution of GH99 superalloy [D]. Harbin: Harbin Institute of Technology, 2015
1 张弘斌. GH99高温合金高温变形行为及组织演化规律研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
2 Li F, Lu Q, Yu Y D. Forming process and microstructure and properties of selective laser melted GH4099 superalloy [J]. T. Mater. Heat Treat., 2021, 42(9): 98
doi: 10.13289/j.issn.1009-6264.2021-0132
2 李 范, 卢 强, 佘亚东. 激光选区熔化GH4099高温合金成形工及组织性能 [J]. 材料热处理学报, 2021, 42(9): 98
3 Lü H, Yang Z B, Wang X, et al. Microstructures and tensile properties of GH4099 alloy Fabricated by laser additive manufacturing after heat treatment [J]. Chin. J. Lasers., 2018, 45(10): 77
3 吕 豪, 杨志斌, 王 鑫 等. 激光增材制造GH4099合金热处理后的显微组织及拉伸性能 [J]. 中国激光, 2018, 45(10): 77
4 Hu Y L, Lin X, Li Y L, et al. Effect of heat treatment on the microstructural evolution and mechanical properties of GH4099 additive-manufactured by directed energy deposition [J]. J. Alloys. Compd., 2019, 800: 163
5 Tan C L, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials [J]. Int. J. Mach. Tools. Manuf., 2021, 170: 103804
6 Thomas M, Baxter G J, Todd I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys [J]. Acta Mater., 2016, 108: 26
7 Xu J H, Schulz F, Peng R L, et al. Effect of heat treatment on the microstructure characteristics and microhardness of a novel γ′ nickel-based superalloy by laser powder bed fusion [J]. Results Mater., 2021(12): 100232
8 Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder. [J]. Acta Metall. Sin., 2018, 54(11): 1537
8 徐 磊, 郭瑞鹏, 吴 杰 等. 钛合金粉末热等静压近净成形研究进展 [J]. 金属学报, 2018, 54(11): 1537
9 Tian X S, Wu Jie, Lu Z G, et al. Effects of cooling rate on the microstructure and tensile properties of powder metallurgy Ti2AlNb alloy [J]. JOM, 2022, 74(8): 2964
10 Raisson G. Evolution of PM nickel base superalloy processes and products [J]. Powder Metall., 2008, 51: 10
11 Bampton C, Goodin W, Vandaam T, et al. Net-shape HIP powder metallurgy components for rocket engines [A]. International Conference on Hot Isostatic Pressing 2005, Net-Shape HIP Powder Metallurgy Components for Rocket Engines [C]. Paris, France, 2005
12 Bassini E, Basile G, Marchese G, et al. Assessment of the reinforcing system and carbides evolution in hot isostatically pressed astroloy after prolonged exposure at 820oC [J]. Mater. Sci. Eng. A, 2020, 773: 138879
13 Tian X S. Densification mechanism of Inconel 718 pre-alloyed powders consolidated by hot isostatic pressing [D]. Shenyang: University of Science and Technology of China, 2023
13 田晓生. Inconel 718粉末合金的热等静压致密化机理研究 [D]. 沈阳: 中国科学技术大学, 2023
14 Hans F, David F. Processing of nickel-base superalloys for turbine engine disc applications [J]. Adv. Powder Technol., 2000, 2: 777
15 Liu Q M, Wu J, Chen Y L, et al. Effect of temperature and powder particle size on mechanical properties and microstructure of PM Ti2AlNb alloy prepared via hot isostatic pressing [J]. Chin. J. Mater. Res., 2019, 33(3): 161
15 刘巧沐, 吴 杰, 陈玉龙 等. 热等静压温度和粉末粒度对Ti2AlNb合金组织与性能的影响 [J]. 材料研究学报, 2019, 33(3): 161
doi: 10.11901/1005.3093.2018.509
16 Chang L T. Preparation and hot isostatic press compaction of superalloy powder with less ceramic inclusions [D]. Shenyang: University of Chinese Academy of Sciences, 2014
16 常立涛. 洁净高温合金粉末的制备及其热等静压工艺研究 [D]. 沈阳: 中国科学院大学, 2014
17 Wang H L. Study on improving mechanical properties of GH99 alloy plate [J]. Sichuan Metall., 2006, 26(1): 30
17 王怀柳. 改善GH99合金板材力学性能的研究 [J]. 四川冶金, 2006, 26(1): 30
18 Wu J, Xu L, Cui X X, et al. Hot isostatic pressing of large thin-wall cylindrical structure of Inconel 718 ring [J]. Aerosp. Sci. Technol., 2020, 63(16): 59
18 吴 杰, 徐 磊, 崔潇潇 等. 大尺寸薄壁Inconel 718环件粉末热等静压近净成形 [J]. 航空制造技术, 2020, 63(16): 59
19 Lu Z G, Wu J, Guo R P, et al. Hot deformation mechanism and ring rolling behavior of powder metallurgy Ti2AlNb intermetallics [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30(7): 621
20 Chang L T, Sun W R, Cui Y Y, et al. Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries [J]. Mater. Sci. Eng. A, 2017, 682: 341
21 Xu L, Guo R P, Chen Z Y, et al. Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys [J]. Chin. J. Mater. Res., 2016, 30(1): 23
doi: 10.11901/1005.3093.2015.284
21 徐 磊, 郭瑞鹏, 陈志勇 等. Ti55合金的拉伸性能和薄壁筒体结构的成形 [J]. 材料研究学报, 2016, 30(1): 23
22 Zhang Y W, Liu J T, Han S B, et al. Discussion on the mechanism of micro-element Hf eliminating PPBS in powder metallurgy superalloy FGH96 [J]. Powder Metall. Ind., 2014, 24(5): 1
22 张义文, 刘建涛, 韩寿波 等. 微量元素Hf消除FGH96合金中原始粉末颗粒边界组织机制的探讨 [J]. 粉末冶金工业, 2014, 24(5): 1
23 Xu L, Tian X S, Wu J, et al. Hot isostatic microstructure and mechanical properties of Inconel 718 powder alloy prepared by hot isostatic pressing [J]. Acta Metall. Sin., 2023, 59(5): 693
doi: 10.11900/0412.1961.2021.00586
23 徐 磊, 田晓生, 吴 杰 等. 热等静压成形Inconel 718粉末合金的显微组织和力学性能 [J]. 金属学报, 2023, 59(5): 693
24 Tan L M. Effect of Co, W, Mo and C on microstructure and mechanical properties of FGH4097PM superalloy [D]. Beijing: Central Iron & Steel Research Institute, 2015
24 谭黎明. Co, W, Mo和C元素对粉末高温合金FGH4097组织和性能的影响 [D]. 北京: 钢铁研究总院, 2015
25 Tian X S, Wu J, Lu Z G, et al. Effect of powder size segregation on the mechanical properties of hot isostatic pressing Inconel 718 alloys [J]. J. Mater. Res. Technol., 2022, 21: 84
26 Wu J, Guo R P, Xu L, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys [J]. J. Mater. Sci. Technol., 2017, 33(2): 172
27 Yu C, Wu S C, Hu Y N, et al. Three-dimensional imaging of gas pores in fusion welded Al alloys by synchrotron radiation X-ray microtomography [J]. Acta Metall. Sin., 2015, 51(2): 159
doi: 10.11900/0412.1961.2014.00334
27 喻 程, 吴圣川, 胡雅楠 等. 铝合金熔焊微气孔的三维同步辐射X射线成像 [J]. 金属学报, 2015, 51(2): 159
28 Guo R P, Xu L, Zong Y P, et al. Characterization of prealloyed Ti-6AI-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 8: 735
29 Tvergaard V. On localization in ductile materials containing spherical voids [J]. Int. J. Fract., 1982, 18(4): 237
30 Aravas N. On the numerical integration of a class of pressure-dependent plasticity models [J]. Int. J. Numer. Meth. Eng., 1987, 24(7): 1395
31 Wu J. Preparation and mechanical properties optimization of powder metallurgy TiAlNb.5Mo alloys [D]. Beijing: University of Chinese Academmy of Sciences, 2016
31 吴 杰. 粉末冶金Ti-22Al-24Nb-0.5Mo合金的制备和性能调控 [D]. 北京: 中国科学院大学, 2016
[1] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[3] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[4] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[5] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[6] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[8] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[9] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[10] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[11] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[12] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[13] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[14] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[15] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.