|
|
有机发光材料与器件研究进展 |
段炼( ),邱勇( ) |
清华大学化学系 北京 100084 |
|
Recent Advances in Organic Electroluminescent Materials and Devices |
Lian DUAN( ),Yong QIU( ) |
Department of Chemistry, Tsinghua University, Beijing 100084, China |
引用本文:
段炼,邱勇. 有机发光材料与器件研究进展[J]. 材料研究学报, 2015, 29(5): 321-336.
Lian DUAN,
Yong QIU.
Recent Advances in Organic Electroluminescent Materials and Devices[J]. Chinese Journal of Materials Research, 2015, 29(5): 321-336.
1 | M. Pope, H. Kallmann, P. Magnante,Electrolum inescence in organic crystals, J. Chem. Phys., 38, 2042(1963) | 2 | C. W. Tang, S. A VanSlyke,Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913(1987) | 3 | M. A. Baldo, D. F. O’ Brien, Y. You, et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 395, 151(1998) | 4 | C. Adachi,Third generation OLED by hyperfluorescence, SID Symposium Digest of Technical Papers, 44, 513(2013) | 5 | H. Liu, G. Cheng, D. H. Hu, et al., A highly efficient, blue-phosphorescent device based on a wide-bandgap host/FIrpic: rational design of the carbazole and phosphine oxide moieties on tetraphenylsilane, Adv. Funct. Mater, 22, 2830(2012) | 6 | D. H. Yu, F. C. Zhao, C. C. Han, et al., Ternary ambipolar phosphine oxide hosts based on indirect linkage for highly efficient blue electrophosphorescence: towards high triplet energy, low driving voltage and stable efficiencies, Adv. Mater, 24, 509(2012) | 7 | C. L. Yang, L. P. Zhu, T. X Liu, et al., Using an organic molecule with low triplet energy as a host in a highly efficient blue electrophosphorescent device, Angew. Chem. Int. Ed., 53, 2147(2014) | 8 | H. Sasabe, J. Takamatsu, T. Motoyama, et al., High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex, Advanced Materials, 22, 5003(2010) | 9 | H. H. Chou, C. H. Cheng,A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs, Advanced Materials, 22, 2468(2010) | 10 | Z. M. Hudson, Z. B. Wang; M. G. Helander,et al., N-heterocyclic carbazole-based hosts for simplified single-layer phosphorescent OLEDs with high efficiencies, Adv. Mater, 24, 2922(2012) | 11 | D. D. Zhang, L. Duan, Y. L. Li, et al., Towards high efficiency and low roll-off orange electrophosphorescent devices by fine tuning singlet and triplet energies of bipolar hosts based on indolocarbazole/1, 3, 5-triazine hybrids, Adv. Funct. Mater., 2014, DOI: 10.1002/ 201303926 | 12 | S. J. Su, C. Cai, J. J. Kido,RGB phosphorescent organic light-emitting diodes by using host materials with heterocyclic cores: effect of nitrogen atom orientations, Chemistry of Materials, 23, 274(2011) | 13 | E. Mondal, W. Y. Hung, H. C. Dai, et al., Fluorene-based asymmetric bipolar universal hosts for white organic light emitting devices, Adv. Funct. Mater., 24, 3096(2013) | 14 | H. Huang, Y. X. Wang, B. Pan, , et al., Simple bipolar hosts with high glass transition temperatures based on 1, 8-disubstituted carbazole for efficient blue and green electrophosphorescent devices with “ideal” turn-on voltage, Chem. Eur. J., 19, 1828(2013) | 15 | K. Wang, F. C. Zhao, C. G. Wang, et al., High-performance red, green, and blue electroluminescent devices based on blue emitters with small singlet–triplet splitting and ambipolar transport property, Adv. Funct. Mater, 23, 2672(2013) | 16 | D. B. Xia, B. Wang, B. Chen, et al., Self-host blue-emitting iridium dendrimer with carbazole dendrons: nondoped phosphorescent organic light-emitting diodes, Angew. Chem. Int. Ed., 53, 1048(2014) | 17 | H. Fukagawa, T. Shimizu, H. Hanashima, et al., Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes, Adv. Mater., 24, 5099(2012) | 18 | Z. M. Hudson, C. Sun, M. G. Helander, et al., Highly efficient blue phosphorescence from triarylboron-functionalized platinum(II) complexes of N-heterocyclic carbenes, J. Am. Chem. Soc., 134, 13930(2012) | 19 | T. Fleetham, J. Ecton, Z. X. Wang, et al., Single-doped white organic light-emitting device with an external quantum efficiency over 20%, Adv. Mater., 25, 2573(2013) | 20 | I. Cho, S. H. Kim, J. H. Kim, et al., Highly efficient and stable deep-blue emitting anthracene-derived molecular glass for versatile types of non-doped OLED applications, J. Mater. Chem., 22, 123(2012) | 21 | K. H. Lee, J. K. Park, J. H. Seo, et al., Efficient deep-blue and white organic light-emitting diodes based on triphenylsilane-substituted anthracene derivatives, J. Mater. Chem., 21, 13640(2011) | 22 | T. Zhang, D. Liu, Q. Wang, et al., Deep-blue and white organic light-emitting diodes based on novel fluorene-cored derivatives with naphthylanthracene endcaps, J. Mater. Chem., 21, 12969(2011) | 23 | J. H. Huang, J. H. Su, X. Li, et al., Bipolar anthracene derivatives containing hole- and electron-transporting moieties for highly efficient blue electroluminescence devices, J. Mater. Chem., 21, 2957(2011) | 24 | K. R. Wee, W. S. Han, J. E. Kim, et al., Asymmetric anthracene-based blue host materials: synthesis and electroluminescence properties of 9-(2-naphthyl)-10-arylanthracenes, J. Mater. Chem., 21, 1115(2011) | 25 | C. J. Chiang, A. Kimyonok, M. K. Etherington, et al., Ultrahigh efficiency fluorescent single and Bi-layer organic light emitting diodes: the key role of triplet fusion, Adv. Funct. Mater., 23, 739(2013) | 26 | A. Endo, K. Sato, K. Yoshimura, et al., Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes, Appl. Phys. Lett., 98, 083302(2011) | 27 | Q. S. Zhang, J. Li, K. Shizu, et al., Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes, J. Am. Chem. Soc., 134, 14706(2012) | 28 | H. Uoyama, K. Goushi, K. Shizu, et al., Highly efficient organic light-emitting diodes from delayed fluorescence, Nature, 492, 234(2012) | 29 | S. P. Huang, Q. S. Zhang, Y. Shiota, et al., Computational Prediction for Singlet- and Triplet-Transition Energies of Charge-Transfer Compounds, Journal of Chemical Theory and Computation, 9(9), 3872–3877(2013) | 30 | Q. S. Zhang, B. Li, S. P. Huang, et al., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence, Nature Photonics, 8, 326(2014) | 31 | D. D. Zhang, L. Duan, C. Li, et al., High efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet-triplet exchange energy, Adv. Mater. 2014, DOI: 10.1002/adma.201401476. | 32 | K. Goushi, K. Yoshida, K. Sato, et al., Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion, Nat. Photon., 6, 253(2012) | 33 | V. Jankus, C. J. Chiang, F. Dias, et al., Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons? Adv. Mater., 25, 1455(2013) | 34 | H. Liu, G. Cheng, D. H. Hu, et al., A highly efficient, blue-phosphorescent device based on a wide-bandgap host/FIrpic: rational design of the carbazole and phosphine oxide moieties on tetraphenylsilane, Adv. Funct. Mater, 22, 2830(2012) | 35 | W. J. Li, Y. Y. Pan, R. Xiao, et al., Employing ~100% Excitons in OLEDs by Utilizing a Fluorescent Molecule with Hybridized Local and Charge-Transfer Excited State, Advanced Functional Materials, 24, 1606(2014) | 36 | D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, et al., Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes, J. Appl. Phys., 6, 124510(2009) | 37 | L. Duan, D. Q. Zhang, K. W. Wu, et al., Controlling the recombination zone of white organic light-emitting diodes with extremely long lifetimes, Adv. Funct. Mater., 21, 3540(2011) | 38 | H. Sasabe, J. Takamatsu, T. Motoyama, et al., High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex, Adv. Mater., 22, 5003(2010) | 39 | S. L. Gong, Y. H. Chen, J. J. Luo, et al., Bipolar tetraarylsilanes as universal hosts for blue, green, orange, and white electrophosphorescence with high efficiency and low efficiency roll-off, Advanced Functional Materials, 21, 1168(2011) | 40 | C. Han, G. H. Xie, H. Xu, et al., A single phosphine oxide host for high-efficiency white organic light-emitting diodes with extremely low operating voltages and reduced efficiency roll-off , Advanced Materials, 23, 2491(2011) | 41 | J. Ye, C. J. Zheng, X. M. Ou, et al., Management of singlet and triplet excitons in a single emission layer: A simple approach for high-efficiency fluorescence/phosphorescence hybrid white organic light-emitting device., Adv. Mater., 24, 3410(2012) | 42 | Q. Wang, C. L. Ho, Y. B Zhao, et al., Reduced efficiency roll-off in highly efficient and color-stable hybrid WOLEDs: The influence of triplet transfer and charge-transport behavior on enhancing device performance, Organic Electronics, 11, 238(2011) | 43 | C. J. Zheng, J. Wang, J. Ye, et al., Novel efficient blue fluorophors with small singlet-triplet splitting: hosts for highly efficient fluorescence and phosphorescence hybrid WOLEDs with simplified structure, Advanced Materials, 25, 2205(2013) | 44 | L. J. Zhang, S. J. Hu, J. W. Chen, et al., A Series of Energy-Transfer Copolymers Derived from Fluorene and 4, 7-Dithienylbenzotriazole for High Efficiency Yellow, Orange, and White Light-Emitting Diodes, Advanced Functional Materials, 21, 3760(2011) | 45 | J. H. Zou, H. Wu, C. S. Lam, et al., Simultaneous optimization of charge-carrier balance and luminous efficacy in highly efficient white polymer light-emitting devices, Advanced Materials, 23, 2976(2011) | 46 | B. H Zhang, G. P. Tan, C. S. Lamet al., High-efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting iridium complex, Advanced Materials, 24, 1873(2012) | 47 | H. Gorter, M. J. J. Coenen, M. W. L. Slaats, et al., Toward inkjet printing of small molecule organic light emitting diodes, Thin Solid Films, 532, 11(2013) | 48 | S. Tekoglu, G. Hernandez-Sosa, E. Kluge, et al., Gravure printed flexible small-molecule organic light emitting diodes, Org. Electron., 14, 3493(2013) | 49 | S. H?fle, M. Bruns, S. Str?ssle, et al., Tungsten oxide buffer layers fabricated in an inert sol-gel process at room-temperature for blue organic light-emitting diodes, Adv. Funct. Mater., 25(30), 4113(2013) | 50 | Q. Fu, J. S. Chen, C. S. Shi, et al., Room-temperature sol?gel derived molybdenum oxide thin films for efficient and stable solution-processed organic light-emitting diodes, ACS. Appl. Mater. Interfaces, 5, 6024(2013) | 51 | S. Feng, L. Duan, L. D. Hou, et al., A comparison study of the organic small molecular thin films prepared by solution process and vacuum deposition: roughness, hydrophilicity, absorption, photoluminescence, density, mobility, and electroluminescence, J. Phys. Chem. C, 115, 14278(2011) | 52 | L. Li, J. J. Liang, S. Y. Chou, et al., A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes, Sci. Rep., 4, 4307(2014) | 53 | S. Kim, H. J. Kwon, S. Lee, et al., Low-power flexible organic light-emitting diode display device, Adv. Mater., 23, 3511(2011) | 54 | Z. Yu, X. Niu, Z. Liu, et al., Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes, Adv. Mater., 23, 3989(2011) | 55 | W. Hu, X. Niu ,L. Li,et al., Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites, Nanotechnology, 23, 344002(2012) | 56 | A. Sandstr?m, H. F. Dam, F. C. Krebs, et al., Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating, Nat. Commun., 3, 1002(2012) | 57 | D. Yokoyama, H. Sasabe, Y. Furukawa, et al., Molecular stacking induced by intermolecular C-H···N hydrogen bonds leading to high carrier mobility in vacuum-deposited organic films, Advanced Functional Materials, 21, 1375(2011) | 58 | N. Li, P. F. Wang, S. L. Laiet al., Synthesis of multiaryl-substituted pyridine derivatives and applications in non-doped deep-blue OLEDs as electron-transporting layer with high hole-blocking ability, Advanced Materials, 22, 527(2010) | 59 | S. Y. Kim, W. I. Jeong, C. Mayr, et al., Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter, Advanced Functional Materials, 23, 3896(2013) | 60 | H. Park, J. Lee, I. Kang, et al., Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency, J. Mater. Chem., 22, 2695(2012) | 61 | H. Y. Li, L. Duan, Y. D. Sun, et al., Study of the hole and electron transport in amorphous 9, 10-Di-(2 '-Naphthyl) anthracene: the first-principles approach, J. Phys. Chem. C, 117, 16336(2013) | 62 | J. Li, Y. Zhao, H. S. Tan, et al., A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, Scientific Reports, 2, 754(2012) | 63 | I. Kang, H. J. Yun, D. S. Chung, et al., Record high hole mobility in polymer semiconductors via side-chain engineering, J. Am. Chem. Soc., 135(40), 14896(2013) | 64 | H. R. Tseng, H. Phan, C. Luo, et al., High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers, Adv. Mater., 2014, DOI: 10.1002/adma.201305084 | 65 | R. Noriega, J. Rivnay, K. Vandewal, et al., A general relationship between disorder, aggregation and charge transport in conjugated polymers, Nat. Mater., 12(11), 1038(2013) | 66 | R. Noriega, A. Salleo, A. J. Spakowitz,Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers, Proc. Natl. Acad. Sci. USA, 110(41), 16315(2013) | 67 | H. Y. Li, L. Duan, C. Li, et al., Transient space-charge-perturbed currents in organic materials: A Monte Carlo study, Org. Electron., 15(2), 524(2014) | 68 | H. Y. Li, L. Duan, D. Q. Zhang, et al., Transient space-charge-perturbed currents of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1, 1′-biphenyl-4, 4′-diamine and N, N′-diphenyl-N, N′-bis(3-methylphenyl)-1, 1′-biphenyl-4, 4′-diamine in diode structures, Appl. Phys. Lett., 104(18), 183301(2014) | 69 | H. Y. Li, L. Duan, D. Q. Zhang, et al., Relationship between mobilities from time-of-flight and dark-injection space-charge-limited current measurements for organic semiconductors: A Monte Carlo study, J. Phys. Chem. C, 118(12), 6052(2014) | 70 | M. Abkowitz, J. S. Facci, M. Stolka, et al., Time-resolved space charge-limited injection in a trap-free glassy polymer, Chem. Phys., 177(3), 783(1993) | 71 | C. Y. H. Chan, K. K. Tsung, W. H. Choi, et al., Achieving time-of-flight mobilities for amorphous organic semiconductors in a thin film transistor configuration, Org. Electron., 14(5), 1351(2013) | 72 | H. H. Fong, K.C. Lun, S. K. So,Hole transports in molecularly doped triphenylamine derivative, Chem. Phys. Lett., 353, 407(2002) | 73 | K. K. Tsung, S. K. So,Carrier trapping and scattering in amorphous organic hole transporter, Appl. Phys. Lett., 92, 103315(2008) | 74 | B. X. Li, J. S. Chen, Y. B. Zhao, et al., Effects of carrier trapping and scattering on hole transport properties of N, N '-diphenyl-N, N '-bis(1-Naphthyl)-1, 1 '-biphenyl-4, 4 '-diamine thin films, Org. Electron., 12, 974(2011) | 75 | C. Li, L. Duan, Y. D. Sun, et al., Charge transport in mixed organic disorder semiconductors: trapping, scattering, and effective energetic disorder, J. Phys. Chem. C, 116, 19748(2012) | 76 | C. Li, L. Duan, H. Y. Li, et al., Universal trap effect in carrier transport of organic disorder semi- conductors: transition from shallow trapping to deep trapping, J. Phys. Chem. C, 118(20), 10651(2014) | 77 | S. Stankovich, D. A. Dikin, G. H. B. Dommett, et al., Graphene-based composite materials, Nature, 442, 282(2006) | 78 | K. Vakhshouri, D. R Kozub, C. C Wang, et al., Effect of miscibility and percolation on electron transport in amorphous poly(3-hexylthiophene)/phenyl-c-61-butyric acid methyl ester blends, Phys. Rev. Lett., 108, 026601(2012) | 79 | C. Li, L. Duan, H. Y. Li, et al., Percolative charge transport in a co-evaporated organic molecular mixture, Org.Electron., 14, 3312(2013) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|