Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (5): 508-512    
  研究论文 本期目录 | 过刊浏览 |
显微组织对X80钢氢致裂纹敏感性及氢捕获效率的影响
曲炎淼
湖北省武汉科技大学
The influence of microstructure on hydrogen induced cracks susceptibility and hydrogen trapping efficiency for X80 pipeline steel
引用本文:

曲炎淼. 显微组织对X80钢氢致裂纹敏感性及氢捕获效率的影响[J]. 材料研究学报, 2010, 24(5): 508-512.

全文: PDF(884 KB)  
摘要: 摘要:本文采用针状铁素体为主的X80管线钢,通过不同的热处理工艺得到X80管线钢多边形铁素体组织试样和板条马氏体组织试样。分别测试三种组织试样在饱和H2S环境中的氢致裂纹(HIC)敏感性及氢渗透行为。结果表明:不同组织X80钢的HIC敏感性大小次序为:水淬处理的板条马氏体组织试样>空冷处理的多边形铁素体组织试样>原始针状铁素体组织试样;氢在材料中的捕获效率是影响材料HIC敏感性的主要因素之一,渗氢通量J∞ 、氢扩散系数Deff越低,氢捕获效率越高,管线钢氢致裂纹敏感性越大。
关键词 材料腐蚀与防护管线钢氢致裂纹(HIC)敏感性渗氢曲线焊接热影响区    
Abstract:Abstract: The X80 pipeline steel based on acicular ferrite was used in this article. Different heat treatment was done on X80 pipeline steel to got different microstructure such as poly ferrite and lath martensite . The HIC behavior of different microstructure of X80 steel was investigated by the hydrogen-induced cracking (HIC) susceptibility test and hydrogen permeation in H2S environment. The result indicates that the HIC susceptibility of different microstructure X80 steel is in the order of: water-quenching> air-cooling>original. Hydrogen trapping efficiency of steel is one of the main factors of HIC sensitive. The more the value of hydrogen flux J∞, hydrogen diffusion coefficient Doff, the fewer pipelines steel is prone to HIC.
收稿日期: 2010-06-09     
基金资助:

国家自然科学基金资助项目

[1]刘伟,蒲晓琳,白小东等.油田硫化氢腐蚀机理及防护的研究现状及进展[J].石油钻探技术,2008,36(01):83-84. Liu Wei,Pu Xiaolin,Bai Xiaodong ect. Development of hydrogen sulfide corrosion and prevention[J].Petroleum drilling techniques,2008,36(01):83-84. [2]李臣生,赵 斌,褚跃民等.硫化氢对气田钢材的腐蚀影响及防治[J],2008,15(4):125-127 . Li Chengsheng, Zhao bin,Chu Yuemin,etal Impact of sulfide corrosion to steels in gas field and the preventive measure[J].Fault-block oll &gas field,2008,15(4):125-127 [3] 王茂堂,何 莹,王 丽,等. 西气东输二线X80级管线钢的开发和应用[J].电焊机,2009,39(5): :6-7. Wang Mao-tang,He Ying,Wang li etal.Development and application of X80 alloy steel pipe for second west to east gas pipeline project[J].Electric welding machine,2009,39(5):6-7 [4] D. Hardie a, E.A. Charles, A.H. Lopez etal. Hydrogen embrittlement of high strength pipeline steels[J].corrosion science,2006(48):4378–4385. [5]Ming-Chun Zhao,Yi-Ying Shan,Fu Ren Xiao etal. Investigation on the H2S-resistant behaviors of acicular ferrite and ultrafine ferrite[J].Materials letters 2002(47):141-145. [6]C.F.Dong, X.G.Li,Z.Y etal. Hydrogen-induced cracking and healing behaviour of X70 steel[J], Journal of Alloys and Compounds 2009(484):966-972. [7]C.F. Dong, Z.Y. Liu , X.G. Li, Y.F. Cheng etal. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking[J]. international journal of hydrogen energy, 2009(34):9879–9884. [8]Wan Keun Kima, Seong Ung Koh , Boo Young Yang etal, Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels[J], Corrosion Science, 2008(50):3336–3342. [9]管线钢和压力容器钢抗氢致开裂评定方法[S].GB/T 8650-2006. [10]张颖瑞,董超芳,李晓刚,芮晓龙,周和容.电化学充氢条件下X70管线钢及其焊缝的氢致开裂行为[J],金属学报,2006,42(5):521-527. Zhang Yingrui,Dong Chaofang,Li Xiaogang etal.Hydrogen induced cracking behaviors of X70 pipeline steel and its welds under electrochemical charging[J]. Acta metallurgica sinica,2006,42(5):521-527. [11] Yi H L, Xue P, Cui R X etal. Research on continuous cooling transformation of X80 pipeline steel [J]. Steel Rolling, 2008,25(2):10~12. [12] 黄 峰,曲炎淼,邓照军,刘 静,郑超超,李晓刚。不同组织X80钢在高pH土壤模拟溶液中点蚀电化学行为。中国腐蚀与防护学报,2010,30(1):29-34. Huang Feng, Qu Yanmiao,Deng Zhaojun, Liu Jing etal. The Pitting Electrochemical Behaviors of Different Mircostructure X80 Steels in High pH Soil SimulativeSolution[J]. Journal of Chinese Society for Corrosion and Protection,2010,30(1)29-34. [13]Gyu Tae Park, Sung Ung Koh, Hwan Gyo Jung etal. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced Cracking of linepipe steel[J]. Corrosion Science, 2008(50):1865-1871. [14]褚武扬.氢损伤和滞后断裂[M].冶金工业出版社.1988:39-40. [15] 衣海龙 , 杜林秀 , 王国栋, X80 管线钢的组织与性能研究[J].东北大学学报(自然科学版),2008,29(2):214-215. Yi Longhai, Du Linxiu, Wang Guodong rtal. Microstructure and Mechanical Properties of Pipeline Steel X80[J]..Journal of Northeastern University(Natural Science), 2008,29(2):214-215.
[1] 杨军, 毕宗岳, 南黄河, 刘海璋. X90高强管线钢的应变时效行为和敏感温度[J]. 材料研究学报, 2021, 35(10): 769-777.
[2] 洪良, 左秀荣, 姬颍伦, 马歌, 董俊媛, 陈雷. 厚规格X80管线钢低温断裂行为研究[J]. 材料研究学报, 2018, 32(1): 33-41.
[3] 赵金华, 王学强, 康健, 袁国, 邸洪双. 超快冷工艺下X80管线钢的DWTT裂纹扩展行为[J]. 材料研究学报, 2017, 31(10): 728-736.
[4] 牛涛, 吴新朗, 安成钢, 姜永文, 张彩霞, 于晨, 代晓莉. 超快冷对厚规格X80管线钢组织性能的影响[J]. 材料研究学报, 2016, 30(8): 620-626.
[5] 贾书君, 王远方, 谭峰亮, 刘清友. 抗大变形管线钢焊接粗晶区的组织和韧性*[J]. 材料研究学报, 2016, 30(7): 517-523.
[6] 汤忖江, 尚成嘉, 关海龙, 王学敏. 大变形管线钢中F/B多相组织应变硬化行为和应力比研究*[J]. 材料研究学报, 2016, 30(6): 409-417.
[7] 姜永文,牛涛,安成钢,吴新朗,张彩霞,代晓莉. X70管线钢的应变时效行为[J]. 材料研究学报, 2016, 30(10): 767-772.
[8] 马晶,张骁勇,程时遐,高惠临. 卷取温度对大变形(B+M/A)X80管线钢组织和性能的影响*[J]. 材料研究学报, 2015, 29(3): 185-194.
[9] 牛涛,姜永文,李飞,朱国森,吴新朗,武军宽. TMCP工艺对高韧性X90管线钢组织性能的影响[J]. 材料研究学报, 2015, 29(12): 948-954.
[10] 段琳娜,陈宇,刘清友,贾书君,贾成厂. 控轧控冷工艺对高强度X100管线钢组织的影响*[J]. 材料研究学报, 2014, 28(1): 51-58.
[11] 张敏 杨亮 李继红. 焊接热输入对X100管线钢接头性能的影响[J]. 材料研究学报, 2012, 26(6): 567-571.
[12] 段琳娜 刘清友 贾书君 贾成厂 谭峰亮. X100级管线钢的组织和强韧性[J]. 材料研究学报, 2012, 26(4): 443-448.
[13] 肖素红; 韩恩厚; 郭敬东 . 脉冲电流处理对X70管线钢腐蚀性能的影响[J]. 材料研究学报, 2006, 20(1): 1-4.
[14] 黎业生; 赵明纯; 单以银; 杨柯 . 一种针状铁素体钢热轧板材的结构与力学性能[J]. 材料研究学报, 2004, 18(3): 322-326.
[15] 钟勇; 王忠军; 单以银; 杨柯 . 热变形对超纯净管线钢组织的影响[J]. 材料研究学报, 2003, 17(3): 303-309.